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Abstract—Unsupervised anomaly detection (UAD) aims to
detect anomalies without labeled data, a necessity in many
machine learning applications where anomalous samples are rare
or not available. Most state-of-the-art methods fall into two cate-
gories: reconstruction-based approaches, which often reconstruct
anomalies too well, and decoupled representation learning with
density estimators, which can suffer from suboptimal feature
spaces. While some recent methods attempt to couple feature
learning and anomaly detection, they often rely on surrogate
objectives, restrict kernel choices, or introduce approximations
that limit their expressiveness and robustness. To address this
challenge, we propose a novel method that tightly couples
representation learning with an analytically solvable One-Class
SVM (OCSVM), through a custom loss formulation that directly
aligns latent features with the OCSVM decision boundary. The
model is evaluated on two tasks: a new benchmark based on
MNIST-C, and a challenging brain MRI subtle lesion detection
task. Unlike most methods that focus on large, hyperintense
lesions at the image level, our approach succeeds to target
small, non-hyperintense lesions, while we evaluate voxel-wise
metrics, addressing a more clinically relevant scenario. Both
experiments evaluate a form of robustness to domain shifts,
including corruption types in MNIST-C and scanner/age vari-
ations in MRI. Results demonstrate performance and robustness
of our proposed model, highlighting its potential for general
UAD and real-world medical imaging applications. The source
code is available at https://github.com/Nicolas-Pinon/uad ocsvm
guided repr learning.

Index Terms—Unsupervised anomaly detection, Representa-
tion learning, One-class SVM, Autoencoders, Joint optimization,
MNIST-C, Medical imaging, Brain MRI

I. INTRODUCTION

UNSUPERVISED anomaly detection (UAD) aims to iden-
tify patterns in data that deviate significantly from an un-

derlying distribution learned from unlabeled normal samples.
It is a critical problem in domains where anomalies are rare,
variable, and costly to label, such as fraud detection or medical
imaging. In neuroimaging, for instance, detecting subtle or
small lesions in MRI scans without annotated anomalies re-
mains an open challenge [1]. Models must not only detect rare
and diverse outliers but also generalize reliably to new data
distributions, such as those resulting from data acquired on
different scanners, or populations with different demographics.

Existing methods fall into two main categories:
reconstruction-based approaches and representation learning
combined with support or density estimation methods.
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Autoencoders and their variants are frequently used in
reconstruction-based strategies, under the assumption that
anomalies will yield higher reconstruction errors. However,
these models typically lack structured latent representations,
which can lead to high quality reconstruction of never
seen anomalies. To overcome this, other methods decouple
representation learning from the anomaly scoring process, for
instance by training a feature extractor independently from a
classifier such as a one-class support vector machine (OCSVM
[2]). However, this separation can yield to representations
not optimized for the decision function computation, leading
to suboptimal performance and limited generalization.
Several recent approaches attempt to couple representation
learning and anomaly detection more tightly, including
methods inspired by Deep SVDD [3]. Yet these often rely on
approximations, suffer from hypersphere collapse, or impose
strong inductive biases (e.g., linear kernel methods) that limit
flexibility and robustness.

To address these limitations, we propose a novel method for
UAD that tightly couples an autoencoder-based representation
learning with a one-class SVM. Our core contribution lies in a
new loss formulation that guides the encoder to produce latent
representations optimized for the OCSVM’s boundary. At each
training step, the model splits latent samples into two subsets:
one to fit the OCSVM boundary and another to enforce that
new samples remain within it. This design reduces overfitting
to non-relevant features by directly aligning the encoder’s
output with the SVM’s discriminative objective. Crucially, it
enables the use of an exact, analytically solved SVM objective,
requiring no approximations or kernel restrictions, thereby
preserving the full expressivity of the OCSVM.

To evaluate the proposed method, we conduct two exper-
iments. First, we introduce a new benchmark task based on
MNIST-C [4], a corrupted version of the MNIST dataset
designed to simulate real-world anomalies. This task allows us
to rigorously assess the model’s performance in a controlled
setting and compare it against state-of-the-art UAD methods.
Importantly, this experiment evaluates the model’s ability to
perform anomaly detection under domain shift, as it must
generalize across diverse corruption types. Second, we apply
the model to a challenging medical imaging task: detecting
subtle brain lesions in MRI scans. In medical imaging, many
UAD methods have traditionally focused on detecting large,
hyperintense lesions, which are often more visible and easier
to identify, especially through reconstruction-based methods.
Our work, in comparison, tackles the problem of detecting
lesions that can be small and not necessarily hyperintense,
representing a more subtle and clinically significant problem.
Additionally, while a significant portion of UAD studies in
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medical imaging measure performances at the image level, we
also assess voxel-wise anomaly detection, thus evaluating pre-
cise localization of anomalies within the image. Furthermore,
this experiment evaluates the model’s robustness to domain
shifts arising from variations in MRI scanners and patient
demographics, such as age.

The contributions of this work are threefold:
• A novel OCSVM-guided representation learning

method for general UAD is introduced, which intro-
duces a loss term aiming at optimizing the representa-
tion learner to produce more suitable representations
when used in conjunction with OCSVM

• A new task based on MNIST-C is introduced to eval-
uate the proposed and state-of-the-art methods under
domain shift, providing a standardized framework for
future research.

• We demonstrate the method’s applicability to real-
world medical imaging, showing improved sensitivity
to subtle and non-hyperintense lesions in public brain
MRI datasets.

The remainder of this paper is organized as follows: sec-
tion II reviews related work on anomaly detection, and then
specifically methods used in medical imaging. Section III
describes our proposed method, detailing the OCSVM-guided
representation learning strategy. Sections IV and V present
our experimental studies: digit distinction under corruptions
using the MNIST-C dataset and subtle lesion detection in brain
MRI, respectively. Section VI provides a general discussion,
including an analysis of the loss components and concludes
the paper while outling potential future research directions.

II. RELATED WORKS

Unsupervised Anomaly Detection (UAD) methods can be
broadly categorized into three main families: reconstruction-
based methods, density estimation-based methods, and support
estimation-based methods, as outlined in the review by Ruff
et al. [5].

All methods share a common objective: modeling the distri-
bution of normal (i.e., non-anomalous) data, often referred to
as the normative distribution. Once this distribution is learned,
anomalies can be detected as samples that significantly deviate
from it. Reconstruction-based methods learn this normative
distribution implicitly, by trying to learn a mapping that can
accurately reconstruct inputs from a compressed represen-
tation. Typically, an autoencoder is trained to encode and
decode normal data, minimizing reconstruction error. At test
time, if the model fails to reconstruct a sample accurately,
the resulting high reconstruction error is interpreted as a sign
of abnormality. This assumes that the model, having only
seen normal data, cannot generalize well to outliers, and
thus reconstructs them poorly. Density and support estimation
methods, on the other hand, attempt to explicitly characterize
the distribution of normal data either by modeling its density
or by learning a decision boundary that encloses the normal
data. In both cases, the anomaly score corresponds to how far
a test sample lies from the estimated normative distribution.

Representation learning lies at the core of most unsuper-
vised anomaly detection approaches, whether they rely on

reconstruction, density estimation, or support estimation. In
practice, both density- and support-based methods typically
do not operate directly on raw data, but instead leverage
intermediate feature representations, often learned through
neural networks, to better capture the structure of normal data.

In this work, we specifically focus on autoencoders due to
their simplicity and widespread use as a foundational method
for unsupervised feature learning, whether used at the end for
reconstruction or density/support estimation. Our study serves
as a case study to illustrate how feature extractors can be
driven and enriched by the downstream anomaly detection
task, and how this compares to reconstruction methods. While
other feature extractors, such as transformer-based models,
could also be employed in a similar framework, exploring all
possible alternatives is beyond the scope of this work.

In this bibliographic review, we place a slight emphasis on
support estimation methods. While density estimation methods
solve a more general problem by modeling the entire data
distribution, support estimation directly focuses on distinguish-
ing normal from anomalous data. Given the vast range of
possible approaches, we choose to primarily focus on support
estimation to maintain a more targeted study, while still
acknowledging the relevance of density estimation methods
in certain contexts.

Section II-A covers reconstruction-based methods where
the anomaly score is directly derived from the reconstruction
error. Section II-B focuses on support and density estimation
methods that use learned representations. We distinguish be-
tween decoupled methods, where the representation learning
and the anomaly scoring are optimized separately, and coupled
methods, which jointly optimize both components, like the
method proposed in this work. Finally, section II-C provides
an overview of anomaly detection methods specifically applied
to medical imaging.

A. Reconstruction-based methods

A widely used approach in UAD is to leverage an autoen-
coder’s (AE) ability to reconstruct normal data while failing
to accurately reconstruct anomalies. As detailed in the review
by Ruff et al. [5], reconstruction-based methods assume that,
after training on normal samples, an autoencoder will learn
a compressed representation that captures essential features
of the normal data distribution. When presented with an
anomalous input, the reconstruction error is expected to be
significantly higher due to the model’s inability to generalize
to unseen, out-of-distribution patterns.

Early approaches relied on simple autoencoders trained with
standard mean squared error or cross-entropy loss, where
anomalies were detected based on high reconstruction error
[6]. This paradigm has been widely applied to image anomaly
detection [7], [8], [9] and extended to various domains, such
as industrial defect detection [10] or medical images [11].
Variational Autoencoders (VAE) introduced a probabilistic
constraint on the latent space, which helps regularize represen-
tations, but they often struggle to clearly separate normal from
anomalous reconstructions due to their tendency to generate
blurry outputs [12].
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Hybrid methods, known as restoration methods have
emerged, which combine the reconstruction error with an
estimation of the density of the distribution of normal samples
in the autoencoder’s latent space. These methods aim to “heal”
the image by restoring it to the normal distribution (thus
erasing the anomaly) and then comparing it to the original
image through the reconstruction error. One example is the
work by Wang et al. [13], which applies this approach to
industrial images by using a quantized autoencoder (VQ-VAE)
in conjunction with an autoregressive model (PixelSnail [14])
for density estimation in the latent space. Another type of
restoration methods has gained recent popularity for anomaly
detection in images: diffusion models, where the image is first
partially noised, and then denoised with a UNet-like model,
effectively providing a restored image [15].

Another alternative direction involves synthetic anomaly
detection (also called self-supervised learning strategies [16],
[17]), where synthetic anomalies are added to the data during
training of a supervised method. This approach, also proved
effective in medical imaging [18], [19], suffers from a severe
drawback : the synthetic anomalies distribution must match
the (unknown) true anomaly distribution, therefore imposing
a strong prior on anomalies that can be detected.

Despite their effectiveness, Ruff et al. [5] highlight several
limitations of reconstruction-based methods. Autoencoders
may generalize too well, inadvertently reconstructing anoma-
lies with low error, which weakens their discriminative power
[20]. Also, reconstruction error alone does not explicitly
define a geometrically-coherent decision boundary between
normal and anomalous data, making it hard to calibrate
anomaly scores. These challenges motivate alternative ap-
proaches where autoencoders serve as representation learners
rather than direct anomaly detectors, as discussed in sec-
tion II-B.

B. Support/density estimation methods
As previously mentioned, support and density estimation

methods typically rely on representation learning to effectively
model the structure of normal data. Autoencoders can fill this
purpose [21], where the learned representations can then be
used for support or density estimation. These representations
can be coupled with classical methods like One-Class SVM
(OCSVM [2]), Support Vector Data Description (SVDD [22])
and their variants, Gaussian Mixture models, and so on.

In this section, we distinguish between decoupled methods,
where the representation learner is trained separately (II-B1)
before applying a support or density estimation method, and
coupled methods (II-B2), where the representation learning
process is influenced by the anomaly detection objective.

1) Decoupled methods: A common approach is to first
train an autoencoder to reconstruct its input, thus providing an
encoder capable of producing a compressed representation of
the input and then apply a separate anomaly detection method
on the learned latent representations; the encoder’s weights are
thus frozen.

One such method is PaDiM [23], which employs a pre-
trained convolutional autoencoder to extract patch-level fea-
tures, followed by a multivariate Gaussian density estimation

to detect anomalies. Similarly, Perera and Patel [24] propose
an autoencoder-based feature extraction stage, followed by a
clustering approach to identify anomalous samples.

Beggel et al. [8] address the challenge of UAD when
the training set is contaminated with outliers by using a
discriminator in the latent space of an autoencoder. During
training this enhances the separation between the normal
training distribution and a predefined anomalous distribution
supposed to contain the outliers. At inference the discriminator
is used to reject anomalies, along with the reconstruction error.

Another example is the use of autoencoder-based represen-
tations with OCSVM, where the extracted features are used
to learn a decision boundary enclosing the normal data. This
approach is applied to industrial images [9] and synthetic
aperture radar images [25]. In both cases, a convolutional
autoencoder is trained on normal samples, and the encoder’s
latent features are fed to an OCSVM for anomaly detection.
In [25], the features are further reduced via PCA, and as in
[8] a discriminator is used.

Decoupled methods often suffer from a sub-optimal align-
ment between the learned representations and the anomaly
detection objective. Since the representation learner is trained
independently from the downstream detection task, the ex-
tracted features may not be maximally informative for dis-
tinguishing normal from anomalous samples. This mismatch
can lead to degraded performance, particularly in complex or
high-dimensional settings where anomaly structures are subtle.

2) Coupled methods: Coupled methods aim to address
this limitation by integrating the representation learning and
support/density estimation steps into a unified framework,
thereby encouraging the latent space to be more directly
optimized for the detection task. A foundational example is
Deep SVDD (DSVDD [3]), which replaces the implicit dual
space mapping of traditional SVDD by an explicit modeling
(thus approximated) with a neural network. The normal data
points are projected in a dual space where they must fit into an
hypersphere of learned radius (soft-variant) or just compacted
around a predefined center (hard-variant). Anomalies are then
identified by measuring the distance to the center (hard) or to
the hypersphere (soft). The method is evaluated on several
standard image datasets, including MNIST and CIFAR-10,
where it demonstrates better performance than kernel-based
baselines such as OCSVM.

Nguyen et al. [26] propose an autoencoder-based OCSVM,
which combines a deep autoencoder for dimensionality reduc-
tion with a OCSVM for anomaly detection. The key inno-
vation is the end-to-end training of both components, where
the autoencoder learns a latent representation that directly
supports the OCSVM in separating anomalies from normal
data. The OCSVM uses Random Fourier Features (RFF) to
approximate the Radial Basis Function (RBF) kernel, making
the method scalable for large datasets. The method is evaluated
on both synthetic and real-world datasets, including MNIST
or KDDCup99 and compared to several classical baselines
such as OCSVM, Isolation Forest [27], and decoupled deep
learning methods. They demonstrate improved performance
over the compared methods, while not directly compared
against coupled methods.
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Deep Structure Preservation SVDD (DSPSVDD) [28] en-
hances Deep SVDD by first pre-training an autoencoder and
then adding the deep SVDD term in the loss fur further fine-
tuning. The major difference is that the reconstruction loss
term is still present in the fine-tuning. This approach is shown
to be more competitive than deep SVDD, isolation forest
and reconstruction error from autoencoder on datasets such
as MNIST, Fashion-MNIST [29] and MVTecAD [10].

In a similar fashion, VAE-based Deep SVDD (DVAESVDD
[30]) combines a VAE with Deep SVDD. This method jointly
optimizes the VAE’s reconstruction loss and the SVDD’s
hypersphere loss. Similarly to DSPSVDD, the integration of
VAE attempts avoiding the “hypersphere collapse” problem,
where all data points are mapped to a single point in the latent
space, a limitation of the original Deep SVDD. Experiments on
MNIST and CIFAR-10 show the superiority of DVAESVDD
over OCSVM and AE reconstruction error.

DASVDD [31] is also an example of combination of au-
toencoder and deep SVDD, where the main difference is that
the center of the hypersphere is updated with a customized
procedure at each batch instead of fixed at the beginning of
the training. This approach shows increased performances over
AE and VAE (when used with reconstruction error), OCSVM
and deep SVDD on MNIST, fashion-MNIST and CIFAR-10.

In a similar vein, Contrastive Deep SVDD (CDSVDD [32])
leverages contrastive learning to improve the discriminative
power of the learned representations. By minimizing both the
contrastive loss and the SVDD loss, CDSVDD ensures that
the representations of normal data are tightly clustered around
the hypersphere center, while anomalies are pushed further
away. This approach also addresses the hypersphere collapse
issue and achieves state-of-the-art performance on benchmark
datasets. This approach shows increase performances com-
pared to deep SVDD and DSPSVDD, notably on CIFAR-10
and Fashion-MNIST.

Beyond SVDD-based formulations, Zong et al. [33] in-
troduce the Deep Autoencoding Gaussian Mixture Model
(DAGMM), which combines a compression network with a
Gaussian Mixture Model applied in the latent space. The loss
function integrates the reconstruction error, the GMM log-
likelihood, and a regularization term. DAGMM was originally
tested on tabular datasets (KDDCup99, Thyroid, Arrhythmia).

Other coupled methods include Patch SVDD [34] that
extends Deep SVDD by incorporating spatial patch-based
features, making it particularly effective for texture-based
anomaly detection tasks or one-class GAN (OCGAN) [35],
which uses adversarial training to enforce that every normal
samples are distributed as a uniform distribution and that
every interpolated sample from this distribution output a
normal-looking image. The method is evaluated on MNIST
and CIFAR-10 and compared against Deep SVDD, VAE and
OCSVM. Patch SVDD [34] shows improved performance on
classification and anomaly localization on MVTecAD, over
deep SVDD and AE and VAE reconstruction error.

Overall, coupled methods seem to benefit from end-to-end
optimization, where the representation learning and anomaly
detection objectives are jointly optimized. This could ensures
that the learned features are directly tailored for anomaly

discrimination, leading to superior performance compared
to decoupled methods. While coupled approaches seem to
surpass their decoupled counterpart in the cited studies, the
diversity of evaluation protocols and datasets makes general-
ization of conclusions difficult. To the best of our knowledge,
no comprehensive study has been conducted to systematically
assess the benefits of coupling representation learning with
anomaly detection, compared to decoupled approaches. Also,
to this day, no method makes use of the full flexibility
offered by the kernel-representation of the OCSVM/SVDD:
all methods use approximations or limitations regarding the
type of kernel used for dual space mapping.

Moreover, most existing studies focus on standard, low-
complexity datasets such as MNIST, Fashion-MNIST, or
CIFAR-10, which do not reflect the challenges of real-world
applications. In particular, the medical imaging domain, de-
spite its complexity and practical importance, remains largely
unexplored in this context. This highlight the need for a
dedicated review of UAD methods in medical imaging, which
we present in section II-C.

C. Unsupervised anomaly detection for medical images

In this section, we focus on Unsupervised Anomaly Detec-
tion (UAD) methods specifically applied to medical imaging.
While the broader field of medical anomaly detection encom-
passes a wide range of modalities and anatomical regions, we
restrict our discussion to studies that align with our focus on
brain MRI.

Reconstruction-based methods, as discussed in section II-A,
have been widely applied to medical imaging. For instance,
Baur et al. [11] conducted a comprehensive comparative
benchmark of various autoencoder architectures, including
classical autoencoders, variational autoencoders, and adversar-
ial autoencoders, for detecting hyperintense lesions in brain
MRI datasets such as MSLUB [36] and MSSEG [37]. Their
findings highlight the effectiveness of reconstruction-based
approaches for identifying small, hyperintense lesions, which
are common in conditions like multiple sclerosis. The same
authors proposed a hybrid architecture combining autoen-
coders with UNet [38], leveraging the reconstruction error
as the primary anomaly score. Their method was evaluated
on the WMH challenge dataset [39], demonstrating strong
performance for detecting small hyperintense lesions.

Cai et al. [17] have performed a wide benchmark on image-
level anomaly detection on medical imaging datasets, and
image-level and voxel-level anomaly detection specifically for
brain MRI on the BraTS dataset [40]. While they do not
evaluate support/density estimation methods on the voxel-
level anomaly detection task, they evaluate a wide variety of
methods based on reconstruction error or synthetic anomaly
generation and find that reconstruction-based methods outper-
form other methods for voxel-level anomaly detection. They
also state that on certain datasets a basic autoencoder used with
reconstruction error outperform every state-of-the-art methods.

Pinaya et al. [41] introduced a restoration-based approach
using a Vector Quantized Variational Autoencoder (VQ-VAE)
coupled with a transformer model for density estimation in
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the latent space. This method was evaluated on multiple neu-
roimaging datasets, including MSLUB, BraTS, and WMH, fur-
ther highlighting the utility of reconstruction-based techniques
for hyperintense lesion detection. Additionally, Ramirez et al.
[42] used VAEs to detect anomalies in Parkinson’s patients’
brain MRI, showing that more anomalies were detected in
patients than in controls, while Zimmerer et al. [43] and Zhao
et al. [44] employed VAEs for brain tumor segmentation,
leveraging reconstruction errors as anomaly scores.

In addition to reconstruction and synthetic methods, sup-
port/density estimation approaches, as discussed in sec-
tion II-B, have also been applied to medical imaging. For
example, we proposed to employ autoencoders as feature
extractors, followed by OCSVM for anomaly detection [45],
[46], [47]. In [45], we utilized a localized SVM approach to
detect challenging epileptogenic lesions in a private dataset,
while in [46] and [47], we proposed a patient-specific OCSVM
framework evaluated on the WMH dataset in the former and
a Parkinson VS control task in the later. Furthermore, Azami
et al. [48] and Bowles et al. [49] used OCSVM for brain MRI
anomaly detection, the latter applying it to unsupervised brain
lesion segmentation by modeling white and gray matter voxels.

Also, a critical issue in the evaluation of medical anomaly
detection methods in brain MRI is the predominance of hyper-
intense lesions in benchmark datasets. As noted by Meissen
et al. [50], many state-of-the-art methods are evaluated on
anomalies that are significantly brighter than the surrounding
tissue in the MRI image (e.g. FLAIR), such as those in
the BraTS and WMH datasets. This raises concerns about
the generalizability of these methods to more challenging
anomalies, such as those with subtle intensity differences or
complex morphological characteristics. In fact, Meissen et al.
[51] demonstrated that simply thresholding these MRI images
could achieve competitive performance on hyperintense lesion
detection, highlighting the need for more rigorous evaluation
protocols and diverse datasets.

Despite encouraging results on hyperintense lesions, the
performance of unsupervised anomaly detection methods on
more challenging, publicly available medical imaging datasets
remains largely unevaluated. Autoencoder-based reconstruc-
tion methods continue to serve as strong baselines, in contrast,
support and density estimation approaches (decoupled II-B1)
remain underexplored in this context, often evaluated only
on private datasets or omitted altogether from comparative
benchmarks. Also, to the best of our knowledge, no coupled
(II-B2) method that jointly optimizes feature representation
and anomaly detection has been applied to medical imaging.

III. METHOD: OCSVM-GUIDED REPRESENTATION
LEARNING

The method we propose is presented in figure 1. An au-
toencoder is used for representation learning, while a OCSVM
is used to estimate the normal data distribution support. The
main goal of the term that we add to the loss function of the
autoencoder is to use normal samples that are misclassified
during training (projected outside the support) to modify the
representation space such that these misclassified samples will

be included in the estimated support at the next iteration.
Section III-A details the main idea of the method without
coupling, by describing the representation learning step III-A1,
followed by the anomaly detection step III-A2. Section III-B
describes our contribution: coupling of the two steps through
the OCSVM-guidance of the representation learning.

A. Decoupled representation learning and anomaly detection

As we have seen in section II-B, autoencoders can be
used to perform representation learning, to obtain a more
compact representation of their input, in their latent space.
Our proposed method can be used with any representation
learner (e.g. transformers) but we will focus on a description
with an autoencoder. Once the input x is compressed into a
latent representation z, we will use the OCSVM algorithm to
estimate the support of the normal class in the latent space
(i.e. the support of the zi).

1) Representation learning with autoencoder: To learn effi-
cient and compressed representations, we train the autoencoder
to reconstruct as accurately as possible the input batch1

(x1, . . . ,xn), while reducing its dimension through its latent
space bottleneck. In UAD, the autoencoder is only trained
on normal data, and thus learn to represent the normal data
manifold in its latent space. We train the autoencoder with the
classical MSE loss :

LAE(x1, . . . ,xn) =
n∑

i=1

||xi − x̂i||22 (1)

Where x̂i is the reconstruction of xi. After training, the
decoder is discarded and the encoder is used, frozen, to
perform dimensionality reduction of samples x into their latent
representation z.

2) Anomaly detection with one-class SVM: To perform the
detection of anomalies, we estimate the support of the normal
data (the boundaries of the normative distribution) with a One-
Class SVM (OCSVM [2]). This is done by constructing a
decision function f , positive on the estimated support of the
distribution of normal samples zi, negative elsewhere and null
on the frontier. The normal samples are first mapped to a high
dimensional space by a feature map Φ(·) associated with a
kernel k such that k(zi, zj) = Φ(zi) ·Φ(zj). As the problem
is linear in this re-description space, the parameters w and ρ
of the hyperplane w ·Φ(z)− ρ = 0 are obtained by solving a
convex optimization problem, presented in equation 2, aiming
at maximizing the distance of the hyperplane from the origin.

min
w,ρ,ξ

1

2
||w||2 +

1

νn

n∑
i=1

ξi − ρ

subject to ⟨w,Φ(zi)⟩ ≥ ρ− ξi i ∈ [1, n]

ξi ≥ 0 i ∈ [1, n]

(2)

The decision function can then be expressed as f(z) = w∗ ·
Φ(z)− ρ∗, with w∗ and ρ∗ the solutions of the optimization
problem.

1Input batches in experiment 1 will be batches of whole images and in
experiment 2 batches of image patches, but this method can be used with any
type of data (even non-image, if the autoencoder is adapted).
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Fig. 1: Graphical abstract of the proposed method. During training, the autoencoder must both minimize the reconstruction error between input and
output and a new loss term (section III-B) that guides the encoder towards representations that are more fitted for support estimation with OCSVM.

Through a process known as the kernel trick, the problem
is actually solved in its dual form :

min
α

1

2

n∑
i=1

n∑
j=1

αiαjk(zi, zj)

subject to 0 ≤ αi ≤
1

νn
i ∈ [1, n]

n∑
i=1

αi = 1

(3)

The decision function is thus expressed as :

f(z) =

n∑
j=1

α∗
jk(zj , z)− ρ∗ (4)

which corresponds to a weighted mean of the kernel dis-
tance to each normal samples, where many coefficients α∗

j are
actually 0. ρ∗ is derived using the α∗

j

At inference, to obtain the anomaly score of a new sample
x, it must first go through the encoder to obtain its latent
representation z, and then through the decision function f .
Note that this score will be positive if the sample is within
the distribution and negative if outside. The more negative the
score, the further the sample is from the normal distribution
and thus the more suspicious it will be considered.

B. Coupling: OCSVM-guidance of the representation learning

We describe in this section our contribution: a novel
OCSVM-guidance (Og) loss term. The goal of this loss is to
align as best as possible the representation of the encoder with
the downstream task of estimating the support of the normal
distribution with the OCSVM. This is performed by splitting
each training batch into two, one used for support estimation
(zSVM) and one for loss computation (zL).

The OCSVM-guidance is divided into two terms: the ex-
pander and the compactor, as represented in figure 2. The
compactor term makes the estimated support more compact
by moving misclassified normal training samples inside the

Fig. 2: Visualization of the two terms present in the proposed loss : both
terms are based on the idea to use the misclassified zL to steer the

representations towards SVM-compatible features. While the expander
term focus on moving the zSVM to expand the estimated support, the
compactor term focus on moving the zL inside the estimated support.

estimated support: this ensures the support stays compact
and allow anomalies to fall outside the support. To prevent
collapsing of the support, as can happen in deep SVDD, the
expander term moves the boundary such that misclassified
normal training samples fall inside the estimated support.
By training the encoder to align with the estimated support
(whether by expanding it or compacting it), we implicitly
encourage deviations from this manifold to correspond to
anomalous behavior, thus learning OCSVM-compatible fea-
tures while avoiding irrelevant overfitting.

As stated, one batch of samples, after encoding, z =
(z1, . . . , zn) is split into two: the part used to solve the
OCSVM problem (zSVM) and the other for the loss computa-
tion (zL):

zi =

{
zSV M
i for 1 ≤ i ≤ n

2
,

zL
i for n

2
< i ≤ n.

At each batch, we solve the OCSVM problem for the zSVM
i,

which will give the optimal α and ρ: α∗ and ρ∗.
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The proposed LOgAE loss is composed of a standard re-
construction error term and the OCSVM-guidance (Og) term,
which penalizes the misclassified zL

i (that are not used to
compute the SVM problem):

LOgAE(x) =

n∑
i=1

||xi − x̂i||22︸ ︷︷ ︸
reconstruction term

+λ

n∑
i=n

2

max(0,−f(zL
i))

︸ ︷︷ ︸
penalization of misclassified zLi

(5)

The second term, weighted by λ, indeed penalizes only
the misclassified zL

i, as the decision function outputs positive
values for correctly classified zL

i, and thus max(0,−f(zL
i))

is 0. Misclassified zL
i are penalized proportionally to their

euclidean distance to the estimated hyperplane.
The interest of separating the latent representation vectors

into two parts zSVM and zL appears here: as the SVM
frontier is estimated on the zSVM

i, most of them are correctly
classified. This justifies the use of another set of latent vectors
zL. Penalizing samples not used for the support estimation
could also be viewed as a way to penalize bad generalization
to unseen samples. We can develop LOgAE with the expression
of f from equation 4:

LOgAE(x) =

n∑
i=1

||xi − x̂i||22

+ λ

n∑
i=n

2

max

0,−

n
2∑

j=1

α∗
jk(z

SVM
j , z

L
i)− ρ∗

 (6)

Recall that α∗ and ρ∗ are functions of the zSVM
i. If we

separate the second term into what depends on the zSVM
i and

what depends on the zL
i, using the stopgradient operator sg[.]

and β1 + β2 = 1, we can write LOgAE as:

LOgAE(x) =
∑n

i=1 ||xi − x̂i||22

+λβ1

Gradient flow only through the zSVM
i︷ ︸︸ ︷

n∑
i=n

2

max(0,−

n
2∑

j=1

α∗
jk(z

SVM
j , sg[z

L
i])− ρ∗)

+λβ2

n∑
i=n

2

max(0,−

n
2∑

j=1

sg[α∗
j ]k(sg[z

SVM
j ], z

L
i)− sg[ρ∗])

︸ ︷︷ ︸
Gradient flow only through the zLi

(7)

This formulation of LOgAE allows separating the influence
of the zSVM

i and the zL
i. We argue that the term weighted

by β1, which gradient flows through the zSVM
i, influences

the frontier of the SVM, as it moves samples in directions
such that it includes the misclassified zL

i in the frontier: we
call this term the expander. The term weighted by β2, which
gradient flows through the zL

i, will influence the misclassified
zL

i, as it moves the samples in directions such that they
enter the boundary drawn by the zSVM

i: we call this term
the compactor.

C. Algorithm and implementation details

The whole training procedure is divided into two parts. First
part is training of the auto-encoder with guidance from the

OCSVM loss term, on the normal data, divided per batches.
Second part is a final OCSVM-training on the encoded nor-
mal data, undivided. The weights of the OCSVM could be
computed and averaged along the batched training of the
autoencoder such that the whole procedure would be in one
step, but we believe a final training on the whole data is quick
and increases stability. The whole procedure is summarized
in the algorithm presented in the supplementary material S-A
and technical details given in S-B.

IV. EXPERIMENT 1: DIGIT DISTINCTION UNDER
CORRUPTIONS

We propose in this first experiment a use-case to evaluate
the performance of the proposed model in a controlled setting
against state-of-the-art. The proposed task will be to evaluate
if the models can correctly classify handwritten digits of the
normal class versus digits of other classes when presented with
a wide variety of corruption noises.

A. Experimental setup and dataset

1) Corrupted MNIST database: MNIST-C [4] is a cor-
rupted variant of the MNIST dataset, designed to evaluate
model robustness under distribution shifts. It applies 15 dif-
ferent types of corruptions, such as noise, blur, and geometric
transformations, to the original MNIST digits. Examples of
such corruptions are shown in the supplementary material
figure 5.

2) Compared methods: To evaluate our proposed method,
we benchmark it against a set of commonly used approaches
in UAD that align with the two main paradigms discussed in
Section II: reconstruction-based methods (Section II-A) and
support estimation-based methods (Section II-B), both using
autoencoders for representation learning.

First, we include standard Autoencoder (AE), Variational
Autoencoder (VAE) and Siamese Autoencoder (SAE) models,
assessing their anomaly detection performance based on re-
construction error. These models are widely used as baseline
approaches in anomaly detection, as discussed in [5] and [11].
Additionally, we evaluate their combination (non-coupled)
with a OCSVM trained on the learned latent space, following
prior works [25], [52], [45].

Since our proposed method explicitly integrates support
estimation within the representation learning process, we also
compare against coupled methods (Section II-B2). Specifically,
we benchmark against Deep SVDD (both hard and soft
versions) [3], Deep Structure Preservation SVDD (DSPSVDD)
[28], and Deep VAE-SVDD (DVAESVDD) [30]. These meth-
ods share the objective of refining representations through
direct integration with an anomaly detection criterion, making
them particularly relevant for comparison with our approach.

This selection of methods allows us to contrast different
paradigms of autoencoder-based anomaly detection, from pure
reconstruction-based approaches to support estimation-based
strategies, both in their decoupled and coupled forms.

For each method, we benchmark a set of their corresponding
hyperparameters, and choose the best performing hyperpa-
rameter on a separate validation set. Performances are then
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reported for the testing set. The benchmarked hyperparameter
and the training/validation/testing split are both detailed in
supplementary materials S-C and S-D. The training, validation
and testing sets roughly contains 17 000, 2000 and 36 000
images. The same autoencoder and training procedure are used
for every method, ensuring fair comparison.

3) Proposed task: We propose here to evaluate the capa-
bility of the different models to perform anomaly detection
under distribution shift, meaning that we train the networks
on a “normal” digit, here 3, under specific corruptions, here
identity, motion blur and translate, and then evaluate the
networks ability to distinguish “normal” from anomalous
digit (here 8), under another distribution of corruptions, here
stripe, canny edges and brightness. This allows evaluating
anomaly detection performance in a difficult setting where
there is a domain shift between the training and the output,
as illustrated on Figure 5. We evaluate another outlier digit in
the supplementary material S-E.

The setting where the training and testing corruptions would
be the same was found too easy to discriminate the different
UAD methods in this analysis. The setting where the method
must distinguish between uncorrupted and corrupted digits
is also fairly easy, with basic methods such as autoencoder
reconstruction error reaching near perfect accuracy [5]. We
propose the outlier digit 8, because it can be very similar to a
3, and thus is supposed to offer a more challenging setup. Also,
some corruptions were found to naturally project to the same
latent space locations, thereby making the density/support
estimation trivial and the reconstructions naturally erase the
corruptions. To provide a difficult setup for both kind of
methods, the corruptions used in the experiments have been
selected such that when training a basic autoencoder, they
would each be separated in its latent space, which we verified
using UMAP.

4) Metrics and statistical testing: In our experiments,
we evaluate anomaly detection performance using the AU-
ROC, AUROC30, and Area Under the Precision-Recall Curve
(AUPR) metrics. AUROC measures the model’s ability to
distinguish between normal and anomalous samples across all
decision thresholds but may overestimate performance when
anomalies are rare. AUROC30 focuses on the low false-positive
rate regime (≤30%), better reflecting practical scenarios with
strict anomaly detection constraints. AUPR is more sensitive
to class imbalance, making it particularly relevant for highly
imbalanced datasets, a setup that is very common in anomaly
detection, but this will not be the case in the following
experiment where the number of normal and abnormal digits
are roughly the same.

We perform statistical testing among the compared models,
by generating 1000 bootstrap samples by resampling the
testing set with replacement, compute the evaluation metrics
(AUROC, AUPR, and AUROC30) for each model on each boot-
strap sample, and identify the best-performing model based on
mean metric values. We then perform a paired bootstrap test,
computing p-values as the fraction of bootstrap samples where
a competing model matches or outperforms the best model.
To account for multiple comparisons, we apply Bonferroni
correction, adjusting the significance threshold accordingly.

TABLE I: PERFORMANCE OF STUDIED MODELS ON DISCRIMINATING 3
VS 8 UNDER CORRUPTION. BEST MODEL IN BOLD. MODELS WITH NO

STATISTICALLY SIGNIFICANT DIFFERENCE (P-VALUE < 0.01 AFTER
PAIRED BOOTSTRAP TEST WITH BONFERRONI CORRECTION) ARE

UNDERLINED.

3 vs 8 AUROC AUPR AUROC30
AE recons 0.56 0.66 0.66
AE ocsvm 0.54 0.65 0.67

VAE recons 0.54 0.65 0.66
VAE ocsvm 0.52 0.63 0.65
SAE recons 0.55 0.65 0.67
SAE ocsvm 0.53 0.64 0.66

OgAE recons [ours] 0.53 0.64 0.66
OgAE ocsvm [ours] 0.59 0.70 0.71

h-DSVDD [3] 0.51 0.62 0.65
s-DSVDD [3] 0.52 0.63 0.66

DSPSVDD [28] 0.51 0.62 0.65
DVAESVDD [30] 0.59 0.67 0.65

B. Results and discussion

Table I presents the performance metrics obtained by all
benchmarked models when distinguishing 3 from 8 under
corruption. On a side note, we find from the start that the 3
studied metrics show good correlation for all results, indicating
that only the study of one of them could suffice.

We observe that representation models coupled with
OCSVM (AE ocsvm, VAE ocsvm, SAE ocsvm and OgAE
ocsvm) seem to be on par with their reconstruction-based
counterparts (AE recons, VAE recons, SAE recons and OgAE
recons) with the exception of OgAE ocsvm, significantly
outperforming its recons counterpart. This finding is slightly
counter-weighted by the additional experiments (table IV)
which suggest that ocsvm models perform slightly better
than recons. Overall, the basic methods (AE-based) remain
competitive, consistently performing within 5 points of the
best model for every metric. Our proposed model, tailored
for coupling with OCSVM (OgAE ocsvm) achieves better
performances than any other model on all metrics (except
when being on par with DVAESVDD for AUROC).

For deep SVDD, the results consistently show that the hard-
margin variant of Deep SVDD (h-SVDD) outperforms or at
least matches the performance of the soft-margin version (s-
SVDD). This seems to align with the original paper results
[3] and the literature, as the version that has been widely
adapted is the hard one [28], [30], [34], [31], which suggests
that the added complexity of the soft-margin approach does
not translate into a performance gain.

When comparing all coupled models (OgAE ocsvm, h-
DSVDD, s-DSVDD, DSPSVDD and DVAESVDD), we find
that OgAE and DVAESVDD outperform their competitors. We
also find that on this non-trivial task, some coupled models are
outperformed by basic baselines (AE recons), aligning with
previous findings [17].

Additionally, we find that DVAESVDD consistently outper-
forms DSPSVDD. This could highlight the advantage of using
the VAE for more compact latent space or adapting the center
of the hyper-sphere at each batch. Both methods consistently
outperform traditional Deep SVDD approaches, aligning with
the findings in their original papers [30], [28].

A global analysis of the results suggests several global
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patterns. Models that leverage representation learning com-
bined with explicit support estimation generally outperform
or are on par with reconstruction-based methods. Coupled
approaches, where representation learning and anomaly de-
tection are jointly optimized, tend to yield better results
than decoupled methods. Recent methods that build upon
Deep SVDD frameworks demonstrate improved performance
over earlier variants. Finally, our proposed method achieves
superior results on this benchmark, surpassing existing state-
of-the-art models.

It is worth noting that the dataset corruptions introduced
in our experiments can be interpreted as a form of domain
shift (i.e. corruptions in the test set are not the same as those
in the training set), further emphasizing the adaptability of
the evaluated models in real-world scenarios. Also, all com-
parative claims regarding model performance are supported
by rigorous statistical testing, ensuring the robustness of our
experimental findings.

V. EXPERIMENT 2: SUBTLE LESION DETECTION IN BRAIN
MRI

In this experiment, we evaluate the models capabilities to
detect subtle lesions in brain MRI scans. This setup is more
challenging than the one in experiment 1, as brain MRI images
typically contain more complex structures and noise, making
anomaly detection more difficult. Example illustrative images
are shown in the first column of Figure 3, where a transverse
slice of an MRI T1 image is shown on top, and the lesion
mask overlaid on this MR image is shown on the bottom.
We propose two tasks: classification at the image-level (3D)
and a localization (segmentation) task at the voxel-level. Both
evaluations are derived from a single anomaly score map
output by each model. The goal is twofold: to determine
whether the model can differentiate between controls and
patients (classification) and to assess its ability to accurately
localize anomalies in patient images (localization).

A. Experimental setup and dataset

For this experiment, we consider three 3D MRI T1 image
databases described below, two databases of normal control
subjects (V-A2), one for training and one for testing and a
pathological database (V-A1) comprising exams of patients
with brain lesions, referred to as the patient database. The
three databases undergo the same preprocessing procedure,
described in the supplementary material S-F, to obtain 3D
volumes of size 186×218×135 with 1mm3 voxel size.

1) Pathological database: The White Matter Hyperintensi-
ties (WMH) dataset originates from the WMH Segmentation
Challenge [39]. More recently, it has also been employed for
unsupervised anomaly detection [38], [41], [53], [51], [46],
using separate normative datasets for training and leveraging
WMH data exclusively for evaluation. Examples of transverse
2D slice extracted from the 3D volume are presented in left
columns of Figures 3 and 8. The dataset consists of MRI scans
from 60 patients acquired from three different hospitals (20
per hospital), along with expert-annotated segmentation masks
of the different pathologies. The patient cohort has a mean

age of 70.1 ± 9.3 years, significantly older than the general
population, introducing a domain shift when used as a test
set for anomaly detection models trained on younger subjects,
notably as the process of normal-brain aging results in a
slight brain shrinkage. Additionally, because WMH lesions are
mostly found in the white matter, models that inherently score
white matter as more anomalous (regardless of lesions) may
perform artificially better. The dataset also exhibits a wide
range of lesion volumes (0.78 cm³ to 195.15 cm³), making
it particularly challenging due to inter-subject variability and
scanner differences.

2) Control databases: The CERMEP control dataset [54] is
used for training and validation of the UAD models. This semi-
public dataset, available upon request, comprises 75 healthy
controls. The subjects in this control group have an average age
of 38 ± 11.5 years, which is relatively younger compared to
the WMH patient cohort. The control dataset used for testing is
a subset of the openly available IXI dataset, which comprises
nearly 600 MRI scans from healthy subjects. For this study, we
selected 60 IXI controls for testing, age-matched to the WMH
dataset (70.1 ± 9.3 years), to mitigate potential age-related bias
in the model’s classification performance. Without this age-
matching correction, the model could have learned to distin-
guish datasets based on age rather than pathological features.
As a result, the control (age-matched IXI) and patient (WMH)
datasets used during inference contain the same number of
subjects and exhibit identical mean and standard deviation in
age, ensuring a fair evaluation of the model’s ability to detect
pathology rather than demographic differences.

3) Compared Methods: Due to the size of the MR images,
we will use our proposed method on small 2D patches
(15×15), as we have already done in previous work [45],
[46] and such that it will approximately match the size of the
images on experiment 1. The 2D anomaly map is obtained by
moving this patch in increments of 1 in all directions across
the entire 2D image and calculating the score of the central
pixel for each position. The 3D score map is obtained by
concatenating the 2D anomaly maps (see first row of figure 3
for examples of anomaly score maps superposed with MRIs).

We compare our proposed method with state-of-the-art
Unsupervised Anomaly Detection (UAD) approaches that have
been evaluated on the WMH dataset. SAE + localized OCSVM
[45] and SAE + patient specific OCSVM [46] are two methods
that also work by patch, and we will thus use the same
autoencoder for our proposed method and these two: it follows
a structure similar to the one used in experiment 1, both
detailed in the supplementary material S-H. We also include
the methods proposed by Baur et al. [38] and Pinaya et al. [41],
which both process full 2D slices, and then by concatenation
obtain the 3D anomaly score map.

For a fair comparison, we implement each method using
the hyperparameters provided in their respective publications.
Hyperparameters for our proposed method are taken to be
the best performing for experiment 1. The training of the
models is done on 80% of the CERMEP control dataset,
while the remaining 20% is used for early stopping during
training. Testing is performed on both the control IXI-age-
matched subset and on the pathological WMH database for

https://brain-development.org/ixi-dataset/


IEEE TRANSACTIONS ON IMAGE PROCESSING 10

the classification task and on the WMH database only for the
localization task.

4) Proposed task: Classification: Once a model is trained
on the CERMEP control database, it can produce at inference
3D anomaly score maps on the IXI test control database and
on the WMH patient database. The first task we propose is
a classification one, more precisely we evaluate how we can
distinguish healthy controls (IXI) from pathological patients
(WMH) from the information contained in each score map. To
obtain a single anomaly score per patient from their anomaly
score map, we tested different aggregation methods (2%
percentile, mean, median, with or without ventricle removal)
and found that it had little impact on the overall results. In
the end, we used the 2nd percentile threshold of the anomaly
scores (meaning 2% of scores fall below this value) while
excluding the ventricles. This exclusion was motivated because
ventricles tend to exhibit high anomaly scores due to age-
related differences between the control and patient databases.

5) Proposed task: Localization: For the second task, we
directly use the anomaly score maps of the WMH patients and
compare it voxel-wise to the ground-truth maps of the lesions,
to obtain localization metrics. IXI controls are not used here
because they contain no lesions.

6) Metrics and statistical testing: We use the same eval-
uation metrics as in experiment 1 (AUROC, AUROC30, and
AUPR) as detailed in section IV-A4, both for the classification
task (distinguishing controls from patients) and the localization
task (identifying lesions within patient images). Unlike the
first experiment with balanced classes, this setup introduces
imbalance in the localization task, where lesion voxels are
rare. AUPR is thus critical, as it better reflects performance
under imbalanced training.

For the classification task, we perform statistical testing
among the different compared models by generating 1000
bootstrap samples by resampling the subjects with replace-
ment, compute the evaluation metrics for each model on each
subject (control or patient), and identify the best model by
mean performance. Then, as for experiment 1, we perform a
paired bootstrap test with Bonferroni correction.

For the localization task, we compute one AUROC, AUPR,
and AUROC30 per patient, thus introducing natural variability
across samples (patients). We employ a Kruskal-Wallis test to
detect overall differences among models, followed by Dunn’s
test for pairwise comparisons (with Bonferroni correction).

The main difference between the two tasks is that in the
classification tasks, we only get one score per sample and
thus, for example, one AUROC for the whole task. We thus
have to use bootstrapping to produce multiple AUROC and
simulate variability, whereas in the localization task, we have
one AUROC per patient (multiples localizations and lesions)
and thus we have a natural inter-patient variability.

B. Results and discussion

Results of the classification experiment are presented in
table III, while results of the localization experiment are
presented in Table IV. Figures 3 and 4 (plus 8 and 9 in the
supplementary material) present visualization of the obtained

score maps. For the AE/UNet method the dynamic range of the
image had to be enhanced to [5%, 95%] quantile for enhanced
visibility.

On the classification task, Table III shows that most mod-
els achieve very high accuracy, with the exception of the
SAE+p.s.OCSVM. The anomaly maps (figure 3 and 4) for this
model suggest that it is highly overfitted to detecting anomalies
in the ventricles and cortex, which could be due to registration
errors rather than actual pathological features (see registration
pipeline in supplementary material S-F). For classification, the
three evaluation metrics exhibit strong correlations. Although
SAE+loc.OCSVM emerges as the best-performing method, its
advantage over other approaches is not statistically significant
(except when compared to SAE+p.s.OCSVM).

It is important to recall that the test databases are age-
matched, meaning that models should not be able to dis-
tinguish images based solely on age-related degenerative
changes. This ensures that any detected anomalies are not
confounded by age effects.

On the localization task, results reported in Table IV show
that AE/UNet, VQ-VAE+Transformer and SAE+p.s.OCSVM)
are not capable of localizing correctly the lesions, as their per-
formance are at chance level or below. For SAE+p.s.OCSVM,
this result is expected as it did not succeed to classify patients
from controls. For AE/UNet and VQ-VAE+Transformer, how-
ever, this result is surprising, as these models are capable of
distinguishing between control and patient, but not by directly
identifying the lesions’ localizations. This could suggest that
these models may have found other discriminant anomalies
than those annotated by the clinicians, or other confounding
features enabling discriminating the IXI from the WMH
subjects.

In contrast, quantitative performances of both
SAE+loc.OCSVM and OgAE+loc.OCSVM show that they
both successfully localize lesions, with OgAE+loc.OCSVM
demonstrating superior performance in detecting small lesions,
as reflected by the AU PR. Note that for this localization task,
the baseline AU PR (random classifier) is 0.007.

Visualization of the score maps in Figure 3 and 4 indicates
that most methods are sensitive to registration errors (partic-
ularly at the outer brain regions) and brain shrinkage, which
is expected due to the difference in age (which is a form of
domain shift, adding difficulty to the task) between the training
and test datasets. We see, for instance, on Figure 4 that most
models flag the lower right ventricle of this example patient
as anomalous, as it is quite enlarged compared to a younger
control (see supplementary material figure 7).

In this study, we used the T1 MRI modality, where lesions
are challenging to detect, unlike all previous studies performed
on this database which also included MR FLAIR images
where WMH lesions appear as hyperintense [53], [41], [38],
[46], [51]. A broader trend emerges where models initially
designed to detect hyperintense lesions struggle with this task.
SAE+loc.OCSVM, originally developed for epileptogenic le-
sions detection (which even experts struggle to see [55]),
performs better in this context. Overall, our proposed method
outperforms state-of-the-art methods on this difficult task,
particularly for identifying small lesions.
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BEST MODEL IN BOLD. MODELS WITH NO
STATISTICALLY SIGNIFICANT DIFFERENCE

(P-VALUE < 0.01 AFTER PAIRED
BOOTSTRAP TEST WITH B

Methods

AE/UNet [38]
VQ-VAE + Transformer [41]

SAE + localized OCSVM [45]
SAE + patient specific OCSVM [46]

OgAE + localized OCSVM [ours]

TABLE II: BEST MODEL IN BOLD. MODELS WITH NO
STATISTICALLY SIGNIFICANT DIFFERENCE (P-VALUE
< 0.01 AFTER PAIRED BOOTSTRAP TEST WITH
BONFERRONI CORRECTION) ARE UNDERLINED.

Classification IXI vs WMH
AU ROC AU ROC 30 AU PR (0.5)

0.98 0.97 0.99
0.96 0.93 0.96
0.99 0.98 0.99
0.09 0.41 0.32
0.90 0.89 0.93

TABLE III: BEST MODEL IN BOLD. MODELS WITH NO
STATISTICALLY SIGNIFICANT DIFFERENCE (P-VALUE
< 0.01 AFTER KRUSKAL-WALLIS AND DUNN WITH

BONFERRONI CORRECTION) ARE UNDERLINED.
Localization WMH

AU ROC AU ROC 30 AU PR (0.007)
0.38 0.42 0.005
0.52 0.51 0.008
0.62 0.59 0.017
0.32 0.41 0.004
0.61 0.72 0.066

Fig. 3: Visualization of a central slice from the T1-weighted brain MRI of a WMH patient (AM126). The ground truth (GT) is overlaid, with light blue
indicating pathological lesions. Anomaly score maps from the studied methods are superimposed, with redder colors corresponding to higher

anomaly scores. At the bottom, the anomaly map is thresholded at the 2% quantile.

VI. GENERAL DISCUSSION AND CONCLUSION

In this work, we introduced a novel method for UAD that
addresses limitations of existing approaches: most state-of-the-
art methods rely either on reconstruction-based models, which
tend to reconstruct anomalies too well and fail to produce
discriminative representations, or on decoupled architectures
where feature learning and anomaly scoring are optimized sep-
arately resulting in misaligned feature spaces. Recent attempts
to couple these processes often rely on surrogate objectives,
linear kernel formulations, or approximations that compromise
flexibility and robustness. To overcome these challenges, we
proposed a coupled framework in which the representation
learning process is explicitly guided by an analytically solvable
OCSVM loss that steers the encoder toward producing latent
features aligned with the OCSVM decision boundary, thereby
directly optimizing the feature space for anomaly detection.
By enforcing this alignment during training, the encoder is
encouraged to focus on features that are genuinely relevant
for modeling the normative distribution, reducing overfitting
to irrelevant patterns.

We evaluated our approach on two tasks: digit distinction
under corruption, and subtle lesion detection in brain MRI.
In the first task, our proposed OgAE paired with OCSVM

outperformed both classical and state-of-the-art UAD methods,
and additionally demonstrating robustness to domain shifts
across diverse corruptions. In the medical imaging task, OgAE
effectively distinguished pathological from control subjects
in brain MRI, despite the challenge of detecting small, non-
hyperintense lesions. It showed superior localization capabili-
ties, particularly for small lesions (by improved AUPR).

A key contribution of our work is the OCSVM-guided
representation learning, which adresses the limitations of ex-
isting coupled approaches: it avoids the pitfalls of traditional
deep SVDD approaches, which often suffer from hypersphere
collapse, by ensuring that the learned representations maintain
sufficient variance while still being well-clustered within the
normal class. In deep SVDD, soft-margin methods explicitly
model the dual-space projection through a neural network,
reducing expressivity, also, the widely used hard-margin vari-
ant focuses on compacting points around a predefined center
without a notion of radius. Our approach, in contrast, does
not rely on a neural network projection, preserving the full
expressivity of the original OCSVM formulation. Furthermore,
unlike methods that arbitrarily steer all points toward a center,
our model allows them to remain in place if they lie within the
estimated boundary, ensuring a sufficient level of variance in
the learned representation. Additionally, we think computing
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Fig. 4: Visualization of a central slice from the T1-weighted brain MRI of a IXI control (IXI158-Guys-0783). Anomaly score maps from the studied
methods are superimposed, with redder colors corresponding to higher anomaly scores. At the bottom, the anomaly map is thresholded at the 2%

quantile.

the loss on a holdout portion of each batch can enhance
generalization.

We show, on Figure 6 in supplementary material, an ex-
ample of training with the expander term (equation 7 β1 =
1, β2 = 0) for the first 5 epochs followed by the compactor
term (β1 = 0, β2 = 1) for 5 other epochs. We study
the average pairwise MSE between the latent representations,
which is an indicator of their spread. We clearly see that during
the expanding phase the spread of the latent representation is
growing and that in the compaction phase it is decreasing.
The best performing strategy (evaluated on experiment 1)
was found to be expander term first followed by expander
+ compactor with the same weight, aligning with the intuition
that increasing the representation’s variety at first benefits
learning, but ultimately, the boundary size must be controlled
and fixed. We believe further research is needed to explore
optimal training strategies.

For the medical image experiment, we did not employ any
post-processing for our approach, unlike other works ([38],
[41]), suggesting that further refinement could improve per-
formances, particularly in the localization task. Additionally,
transitioning to 3D representations for medical images could
enhance the model’s spatial awareness. Previous research [46]
suggests that patch size has minimal impact on performance,
reinforcing the generalizability of our approach. Given that the
autoencoder+localized OCSVM method [45] was effective for
epilepsy detection, we should evaluate the potential of our
proposed OgAE on epilepsy datasets as well, e.g. [56].

Several avenues for future research remain open. While our
study focused on autoencoders, the OCSVM-guided frame-
work could be applied to other feature extraction methods (e.g.
transformers). Additionally, since we have focused our study
to support estimation models (see section II-B), exploring
density estimation techniques, which have proven competitive
in anomaly detection, could provide further insights. Our

method was designed for UAD (training only on normal
samples), but in a semi-supervised setting, it could be extended
by incorporating anomalous samples to refine the decision
boundary: instead of only enforcing that normal samples re-
main inside the estimated boundary, anomalous samples could
be explicitly pushed outside (or the frontier compacted such
the sample remain outside). Also, an SVDD-guided variant
could be implemented and evaluated, despite being similar
when using the RBF kernel.
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SUPPLEMENTARY MATERIAL

A. Algorithm

Autoencoder training with OCSVM-guidance
Input: Normal samples (xi)1≤i≤N

Output: Trained encoder E ▷ Decoder D is discarded
for each epoch do

for every batch of samples (xi)1≤i≤b do ▷ Batch size b
Compute latent representations of samples :
(zi)1≤i≤b = E[(xi)1≤i≤b]
Split in two the zi to obtain zSVM

i and zL
i

Solve the OCSVM problem (3) for the zSVM
i to

obtain:
(α∗

j )1≤j≤ b
2

and ρ∗

Compute the reconstructions of latent representa-
tions:

(x̂i)1≤i≤b = D[(zi)1≤i≤b]
Compute the loss (7) and apply a gradient step to E

and D
end for

end for

OCSVM final training
Input: Normal samples (xi)1≤i≤N and trained encoder E
Output: Decision function f of OCSVM

Compute latent representations of samples:
(zi)1≤N = D[(xh

i ))1≤N ]
Solve the OCSVM problem (3) for the (zi)1≤N to obtain
the parameters of the final decision function

B. Technical details for the OCSVM-guidance model

This section outlines the technical implementation of the
OCSVM-guidance model, particularly the gradient compu-
tation through the dual solution, the numerical stabilization
techniques, and the kernel matrix reformulation.

When computing the expander term in equation 7, we have
to differentiate through α∗ and ρ∗, thus through a convex
optimization problem (problem 3): to do this we use [57].
We also study configurations in which the gradient flow only
trough zSVM for the expander term and thus apply the sg[.]
operator to α and ρ. For solver-related manner, the problem
3 has to be written in a way that it is linear in parameters,
not quadratic. We thus utilize the fact that K is positive
semi-definite (because it is a gram matrix), to express it as:
K = K

1
2
T

K
1
2 . Where Kij = k(zi, zj). As recommended in

[58], because 1
νjn

can get very small as n increase, this only
leaves a tight bound for the constraint 0 ≤ αji ≤ 1

νjn
. Thus,

for numerical stability reasons, we solve a scaled problem
of variable α̃ji = nνjαji. As also recommended in [58] for
numerical stability, to compute ρ, we average the ρ obtained
for every support vector. Finally, also for numerical stability,
we computed K as K + 1e−8I. We used the OSQP solver
[59].

C. Benchmarked hyperparameters for experiment 1

These hyperparameters are:
• weight coefficients for KL divergence (VAE)
• cosine similarity (SAE)
• λ (OgAE)
• γ (DSPSVDD, see article [28])
• α (DVAESVDD, see article [30])
• expander/compactor strategy (OgAE), i.e. β1, β2 = {0, 1}
• ν, γRBF and scaling of the latent variables (every method

using OCSVM)
The same autoencoder and training procedure are used for

every method, to ensure fair comparison. The architecture is
the one used for the MNIST experiment in DVAESVDD [30],
it is detailed in the supplementary material S-H1. Note that
the auto-encoder inputs here are batches of full-sized images.
For the models using reconstruction error, the mean of the
reconstruction error map (||x − x̂||22) is used as the anomaly
score. For the models using a OCSVM, the OCSVM is trained
on the training set and the anomaly score is computed using
the decision function (equation 4), RBF kernel is used. For
deep SVDD (soft and hard), DSPSSVDD and DVAESVDD,
the anomaly scoring function described in the original articles
is used.

D. Training/validation/testing split for experiment 1

The training set is composed of the 6131 handwritten 3
images from the training set of MNIST, corrupted with the
training corruptions (identity, motion blur and translate), for
a total of 18393 images. 90% are used for model training
and 10% are used for early stopping. The validation set is
composed of both 974 handwritten 8 and 1010 3 images
from the testing set of MNIST, corrupted with the testing
corruptions s1 (stripe, canny edges and brightness), for a
total of 5952 images. The testing set is composed of both
5851 handwritten 8 and 6131 3 images from the training
set of MNIST, corrupted with the testing corruptions (stripe,
canny edges and brightness), for a total of 35946 images.
Note that the use of the testing set for validation and the
training set for testing is done to give the testing set the
most samples and thus the most statistical power for drawing
reliable conclusions. Also note that while the performances
could be a little bit over-estimated because the hyperparameter
optimization is done on the same corruptions as the testing
set, the validation set and the testing set have no samples in
common. The training set and the testing set, obviously, do
not have the same corruptions. For the 3 vs 4 experiment,
presented in the supplementary material S-E in table IV, the
validation set is composed of both 982 handwritten 4 and 1010
3 images from the testing set of MNIST, corrupted with the
testing corruptions, for a total of 5976 images. The testing set
is composed of both 5842 handwritten 4 and 6131 3 images
from the training set of MNIST, corrupted with the testing
corruptions for a total of 35919 images.
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Fig. 5: Corruptions of the MNIST dataset (MNIST-C [4]) used
throughout this article, on the digit 3.

TABLE IV: PERFORMANCE OF STUDIED MODELS ON DISCRIMINATING
3 VS 4 UNDER CORRUPTION (WHICH DIFFER FROM 3 VS 8 IN THE

MAIN BODY). BEST MODEL IN BOLD. MODELS WITH NO STATISTICALLY
SIGNIFICANT DIFFERENCE (P-VALUE < 0.01 AFTER PAIRED

BOOTSTRAP TEST WITH BONFERRONI CORRECTION) ARE UNDERLINED.

3 vs 4 s1 AUROC AUPR AUROC30
AE recons 0.51 0.64 0.66
AE ocsvm 0.52 0.64 0.67

VAE recons 0.51 0.63 0.65
VAE ocsvm 0.57 0.67 0.68
SAE recons 0.47 0.60 0.64
SAE ocsvm 0.58 0.68 0.69

OgAE recons [ours] 0.55 0.66 0.67
OgAE ocsvm [ours] 0.74 0.76 0.73

h-DSVDD [3] 0.54 0.64 0.65
s-DSVDD [3] 0.46 0.59 0.63

DSPSVDD [28] 0.56 0.66 0.67
DVAESVDD [30] 0.59 0.69 0.69

E. Additional results for experiment 1

We propose to extend the evaluation carried out in experi-
ment 1, by evaluating another, easier outlier digit : 4. Table IV
presents the performances on the different evaluated models
(main body section IV-A2) for this outlier digit.

Slightly differently to the experiments of the main body
(table I) we observe that representation models coupled with
OCSVM (AE ocsvm, VAE ocsvm, SAE ocsvm and OgAE
ocsvm) seem to outperform their reconstruction-based counter-
parts (AE recons, VAE recons, SAE recons and OgAE recons)
for the 3 vs 4 task. The only exception is the AE, which
performs on par with its ocsvm counterpart. Overall the OgAE,
paired with ocsvm, seem to be the best-performing model on
this extended experiment, confirming the trend presented in
the main body.

As in the main body, the extended results show that the
hard-margin variant of Deep SVDD (h-SVDD) outperforms
the performance of the soft-margin version (s-SVDD). Also,
as in the main body, we find that DVAESVDD outperforms
DSPSVDD.

When examining the highest-performing models, we ob-
serve a decline in performance when transitioning from the
3 vs 4 task to the 3 vs 8 task, which as we suggested could
be caused by the 8 being more similar to a 3 than the 4. Note

Fig. 6: Average MSE between latent representations during the training
of the OgAE model for experiment 2. For the first 5 epochs the

expander term is used, followed by the compactor term.

however that this trend is not systematic across all models.
As in the main body, we find that on average the basic

methods (AE-based, with recons or ocsvm) remain strong
competitors, especially when compared with state-of-the-art
propositions [30], [28], [3]. We also find that our proposed
method achieves superior results on this benchmark, surpass-
ing existing state-of-the-art models.

We also benchmarked a different set of corruptions from
those used in the main experiments and observed similar
results

F. Brain MRI registration and preprocessing pipeline for
experiment 2

The brain MRI T1 preprocessing applied in this paper is
based on a pipeline implemented in SPM12 and fully described
in [45]. This pipeline includes a critical registration step
that enables precise voxel-wise comparisons across subjects
by aligning all images to a standardized anatomical space.
Spatial normalization was performed using the unified seg-
mentation algorithm (UniSeg) which includes segmentation
of grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF), correction for magnetic field inhomogeneities and
spatial normalization to the standard brain template of the
Montreal Neurological Institute (MNI). In this work, we used
the default parameters for normalization and a voxel size of 1
× 1 × 1 mm. The cerebellum and brain stem were excluded
from the spatially normalized images. The masking image in
the reference MNI space was derived from the Hammersmith
maximum probability atlas. On top of that, each image was
intensity-normalized with: Xnorm = X−min(X)

max(X)−min(X) .

G. Additional results and visualizations for experiment 2

Figure 7 shows a control of the training database: notice
the ventricles, considerably smaller than the ventricles of the
other older control subjects in Figure 4 and Figure 9. Figure
8 and Figure 9 show two additional examples of both WMH
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Fig. 7: Visualization of a central slice from the T1-weighted brain MRI of
a control used for training (database [54], with younger mean age then

the test databases).

patient and IXI controls, with their associated anomaly score
maps for all the benchmarked methods.

As mentioned in the main body, figure 6 shows an example
of training, in experiment 2, with the expander term (equation
7 β1 = 1, β2 = 0) for the first 5 epochs followed by the
compactor term (β1 = 0, β2 = 1) for 5 other epochs. We study
the average pairwise MSE between the latent representations,
which is an indicator of their spread.

H. Autoencoder architectures

1) Experiment 1: The autoencoder architecture for all
models of experiment 1 is the one used for the MNIST
experiment in DVAESVDD [30]. It consists of a convolutional
encoder and a symmetric decoder. The encoder comprises
two convolutional layers (5×5 kernels, 4 and 8 filters), each
followed by batch normalization, LeakyReLU activation, and
2×2 max pooling. The latent representation is obtained via
a fully connected layer of dimension 32 (meaning reduction
factor of 24.5). The decoder mirrors the encoder, employing
a dense layer to reshape the latent space, followed by two
transposed convolutional layers (5×5 kernels, 8 and 4 filters)
interleaved with batch normalization, LeakyReLU activation,
and 2×2 upsampling. A final transposed convolution (5×5, 1
filter) with a sigmoid activation reconstructs the input. The
model is trained with mean squared error as the reconstruction
loss, optimized with Adam (learning rate: 1e-3), with a batch
size of 100, for 20 epochs.

2) Experiment 2: We present in this section the autoencoder
architecture used in experiment 2. The encoder consists of
four convolutional layers: a 5×5 layer with 3 filters, followed
by three successive 3×3 layers with 4, 12, and 16 filters,
respectively. Each convolutional layer is paired with batch
normalization and GELU activation. The decoder mirrors
this structure precisely. It begins with three 3×3 transposed
convolutional layers with 12, 4, and 3 filters, each followed
by batch normalization and GELU activation, and concludes
with a 5×5 transposed convolution and a sigmoid activation.
For training, we optimize the model using mean squared error
(MSE) with the Adam optimizer (learning rate: 1e-3), trained
for 10 epochs with a batch size of 100.



IEEE TRANSACTIONS ON IMAGE PROCESSING 17

Fig. 8: Visualization of a central slice from the T1-weighted brain MRI of a WMH patient (SIN67). The ground truth (GT) is overlaid, with light blue
indicating white matter lesions (“hyperintensities” on FLAIR MRI but not on T1) and blue representing other pathologies. Anomaly score maps from

the studied methods are superimposed, with redder colors corresponding to higher anomaly scores. At the bottom, the anomaly map is
thresholded at the 2% quantile.

Fig. 9: Visualization of a central slice from the T1-weighted brain MRI of a IXI control (IXI072-HH-2324). Anomaly score maps from the studied
methods are superimposed, with redder colors corresponding to higher anomaly scores. At the bottom, the anomaly map is thresholded at the 2%

quantile.


	Introduction
	Related works
	Reconstruction-based methods
	Support/density estimation methods
	Decoupled methods
	Coupled methods

	Unsupervised anomaly detection for medical images

	Method: OCSVM-guided representation learning
	Decoupled representation learning and anomaly detection
	Representation learning with autoencoder
	Anomaly detection with one-class SVM

	Coupling: OCSVM-guidance of the representation learning
	Algorithm and implementation details

	Experiment 1: Digit distinction under corruptions
	Experimental setup and dataset
	Corrupted MNIST database
	Compared methods
	Proposed task
	Metrics and statistical testing

	Results and discussion

	Experiment 2: Subtle lesion detection in brain MRI
	Experimental setup and dataset
	Pathological database
	Control databases
	Compared Methods
	Proposed task: Classification
	Proposed task: Localization
	Metrics and statistical testing

	Results and discussion

	General Discussion and conclusion
	References
	Algorithm
	Technical details for the OCSVM-guidance model
	Benchmarked hyperparameters for experiment [sec:1]1
	Training/validation/testing split for experiment 1
	Additional results for experiment [sec:1]1
	Brain MRI registration and preprocessing pipeline for experiment [sec:2]2
	Additional results and visualizations for experiment [sec:2]2
	Autoencoder architectures
	Experiment [sec:1]1
	Experiment [sec:2]2



