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Abstract
Purpose.Motion-mask segmentation from thoracic computed tomography (CT)
images is the process of extracting the region that encompasses lungs and vis-
cera, where large displacements occur during breathing. It has been shown to
help image registration between different respiratory phases. This registration
step is, for example, useful for radiotherapy planning or calculating local lung
ventilation. Knowing the location of motion discontinuity, that is, sliding motion
near the pleura, allows a better control of the registration preventing unrealistic
estimates. Nevertheless, existing methods for motion-mask segmentation are
not robust enough to be used in clinical routine. This article shows that it is fea-
sible to overcome this lack of robustness by using a lightweight deep-learning
approach usable on a standard computer, and this even without data augmen-
tation or advanced model design.
Methods. A convolutional neural-network architecture with three 2D U-nets for
the three main orientations (sagittal, coronal, axial) was proposed. Predictions
generated by the three U-nets were combined by majority voting to provide a
single 3D segmentation of the motion mask. The networks were trained on a
database of nonsmall cell lung cancer 4D CT images of 43 patients. Train-
ing and evaluation were done with a K-fold cross-validation strategy. Evaluation
was based on a visual grading by two experts according to the appropriateness
of the segmented motion mask for the registration task, and on a comparison
with motion masks obtained by a baseline method using level sets. A second
database (76 CT images of patients with early-stage COVID-19),unseen during
training, was used to assess the generalizability of the trained neural network.
Results. The proposed approach outperformed the baseline method in terms
of quality and robustness: the success rate increased from 53% to 79% without
producing any failure. It also achieved a speed-up factor of 60 with GPU, or 17
with CPU. The memory footprint was low: less than 5 GB GPU RAM for training
and less than 1 GB GPU RAM for inference. When evaluated on a dataset with
images differing by several characteristics (CT device, pathology, and field of
view), the proposed method improved the success rate from 53% to 83%.
Conclusion. With 5-s processing time on a mid-range GPU and success rates
around 80%, the proposed approach seems fast and robust enough to be rou-
tinely used in clinical practice. The success rate can be further improved by
incorporating more diversity in training data via data augmentation and addi-
tional annotated images from different scanners and diseases. The code and
trained model are publicly available.
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1 INTRODUCTION

1.1 Deformable image registration and
motion mask

Various medical applications, such as radiotherapy
treatment planning for patients with lung cancer, ven-
tilation assessment in chronic obstructive pulmonary
disease (COPD), or recruitment quantification in acute
respiratory distress syndrome (ARDS), require align-
ing lungs and other thoracic structures in 3D computed
tomography (CT) images, by means of a deformable
registration method.1–4 As deformable image registra-
tion is an ill-posed problem, it needs to be regularized
and, usually, algorithms are built on an assumption of
motion continuity and smoothness, that is, neighboring
points are assumed to have similar displacements.5,6

This assumption does not hold in the case of tho-
racic scans representing different phases of the breath-
ing cycle, because lungs and viscera slide along the
pleura, so that their displacements are different (gener-
ally much larger) than those of the neighboring points of
the rib cage. Regularization penalties and smoothness
constraints hence lead to erroneous displacement-field
estimation around regions of discontinuous motion.

To address this problem, several approaches have
been proposed, which consider an initial segmentation
of moving and less-moving regions in the image to
restrict the regularization at the boundaries of the slid-
ing areas.7–11 As an example, Delmon et al.9 have pro-
posed a B-spline-based registration method such that
regularization is enforced along the direction tangential
to the segmented boundary and it is relaxed in the nor-
mal direction. Hua et al.11 have extended the B-spline
approach by incorporating an additional term that acts
on a subset of control points, for which the boundary
intersects the support of their corresponding basis func-
tion. Also a finite-element-based approach has been
proposed to perform lung registration preserving motion
discontinuity.10 Although such methods often use pre-
segmentation of the lungs alone, Vandemeulebroucke
et al.12 have developed a so-called motion mask that
encompasses lungs and viscera, and thus delineates
a region, in which the motion field is supposed to be
smooth (Figure 1). Its boundary defines where sliding—
and thus discontinuity in the vector field—occur between
the rib cage and the internal structures, when breathing.
The seminal motion-mask segmentation12 is based on a
level-set framework and involves preliminary automated
delineation of several anatomical elements (patient’s
body contour, lung parenchyma, bony structures) fol-
lowed by growing an ellipsoid within the abdomen to fill
the thoracic cavity.

This approach, already exploited in previous
studies,9,13 has recently been evaluated and clini-
cally used in our institution for radiation therapy of
locally advanced nonsmall cell lung cancer.14 More than

40 patients with 4D thoracic CT, of 10 breathing phases
each, were included. Motion masks were automatically
extracted for all images (n > 400) with the same set
of parameters. Average computation time per motion
mask was about 12 min (including above-mentioned
preprocessing steps and level-set algorithm), and up to
16 GB of RAM was required. Each extracted mask was
visually assessed and, if needed, manually corrected
before use. Approximately half of the automatically
segmented masks required such manual correction,
which was often time-consuming. Hence, the motion-
mask extraction based on level sets has been useful,
but is not robust enough to be routinely used in the
clinical context.

In the present study,we investigate a more robust and
faster motion-mask segmentation method,while consid-
ering the level-set approach as a baseline. As image-
segmentation methods have dramatically evolved with
the advances of deep-learning (DL) algorithms based
on neural networks,15 we have chosen to tackle our
problem using the DL approach, which—to the best of
our knowledge—has not yet been attempted in motion-
mask segmentation. The goal here was to assess
whether or not a lightweight DL method, trained on
acceptable-quality motion masks extracted by level sets,
can perform more rapidly and robustly than the baseline
method. Therefore, the next section summarizes useful
notions from literature on DL-based medical-image seg-
mentation, which guided our choices.

1.2 Deep-learning segmentation

The general approach to image segmentation by DL
techniques is based on the use of three elements: (1) a
model devised to produce a segmentation mask given
an input image, (2) a dataset composed of images
and their associated reference segmentation masks,
and (3) an optimization strategy designed to train the
model. The most common models successfully used for
medical image segmentation15 are deep convolutional
neural networks based on U-net architecture.16 This
architecture is made up of an encoding part and a
decoding part. The encoding part projects the input
image onto a smaller latent space through several layers
of convolution generating so-called feature maps, each
followed by a pooling layer to downscale the resulting
feature maps.The decoding part upscales the projection
from latent space to image space, thus predicting a seg-
mentation mask at the same scale as the input image.
Skip-connections between the encoding and decoding
pathways ensure that details,which might be lost during
the encoding step,can be recovered during the decoding
step. Thus, the more abstract concepts encoded in the
latent space (multiscale feature maps) still have access
to the finer details of the input image when reconstruct-
ing a segmentation mask in the decoding part of the
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422 MOTION-MASK SEGMENTATION WITH U-NETS

F IGURE 1 Example of motion mask represented in 3D (in red color), as well as in translucent overlay on orthogonal views of a thoracic
scan

model. The aim of the training procedure is to adjust the
parameters of the model so that it can predict, which
voxels belong to the segmented class, here the area
included in the motion mask.

Models based on U-net architecture, which uses 2D
convolutions, usually perform very well, but one of
their current challenges is to scale them in 3D, that
is, using 3D convolutions with volumetric images as
input.Although several teams have proposed successful
3D scaling of the U-net,17–21 each specific application
seeks a trade-off between spatial resolution and com-
putational power, because the number of model param-
eters, as well as the intermediate feature maps have
a large impact on memory usage, requiring expensive
infrastructures for both training and inference.

To tackle the problem with limited computational
resources without losing complementary information
brought by the 3D context, several approaches have
considered extending 2D DL models to multiplanar
methods (also referred to as 2.5D methods), which
take as input several planes extracted from a 3D
volume. These approaches can be considered as a
subcategory of the multistream methods, as described
by Litjens et al.15. In the sequel, we focus on the

multiplanar methods, as they help reduce the
computational-power requirements and improve the
applicability of the developed DL methods in clinical
routines.Depending on the respective orientation and/or
position of the considered planes, three main strategies
can be observed: (1) using the classic three orthogonal
planes (axial, sagittal, coronal),22–24 (2) using multi-
ple parallel planes that can form a slab if they are
adjacent,25,26 and (3) using multiple planes (usually
more than 3) of random orientation.27,28

Regardless of the orientations/positions, the scope of
the extracted input planes has varied across the pub-
lications, considering either the whole slice extent25–27

or a patch (e.g., a subpart of size 32 × 32 cropped
from a full slice of size 256 × 256).22–24,28 Although full
slices take into account a larger context,the patch-based
approach lightens the computational load, but requires
multiple data-augmentation operations27,28 to compen-
sate for the loss of context information and improve
robustness.

Information from different planes can be merged at
several stages of the segmentation pipeline: (1) when
the multiple planes are set as multiple channels input to
the network,25–28 (2) when passing independently each
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MOTION-MASK SEGMENTATION WITH U-NETS 423

plane through a network before a fusion layer,22,24 or
(3) at the very end of the pipeline with a determin-
istic ensemble strategy.23 In (2) and (3), each stream
of information passes through a specific branch, and
each branch can be a whole network (potentially pre-
trained),whereas in (1), there are no branches (only one
network).

In the sequel, a multiplanar DL-based strategy for
motion-mask segmentation is proposed as a trade-
off between accuracy, computational resources, and
speed. Three slightly modified 2D U-nets, each using
conventional orthogonal planes (axial, coronal, sagit-
tal), are separately trained, and then merged by major-
ity vote to provide a volumetric binary mask. The
results demonstrate the feasibility of this solution,
which reasonably compares with a 3D U-net, but
other DL architectures may be explored for further
improvement.

2 MATERIALS AND METHODS

2.1 Datasets and expert annotations

Before specifying the method proposed to automatically
compute a motion mask from thoracic 3D CT scans,
we first describe the data available for training and
evaluation.

We used datasets from two clinical trials: ClinicalTri-
als NCT01635270 and NCT04377685. The first one14

included 43 patients with locally advanced nonsmall
cell lung cancer treated with radiation therapy. For each
patient, a 4D thoracic CT scan composed of 10 phases
was acquired during free breathing with a Brillance Big
Bore (Philips Medical System, Cleveland, OH) and the
Pneumo Chest bellows belt used for breathing syn-
chronization. Images were reconstructed with voxel size
ranging from 0.92 × 0.92 × 2 to 1.37 × 1.37 × 3 mm. For
three patients,an additional 4D CT acquisition was avail-
able.For the current study,we selected from each acqui-
sition 3D CT scans corresponding to the end-exhale and
end-inhale phases, that is, a total of 92 volumes, size
512 × 512 × [88 − 218]. This dataset will be referred to
as S1. The second dataset, S2, included 38 early-stage
COVID-19 patients, with two breath-hold 3D CT scans
acquired at end-exhale and end-inhale on a Siemens
Somatom.These scans were of size 512 × 512 × [300 −
400] voxels, with voxel sizes ranging from 0.7 × 0.7 × 1
to 0.9 × 0.9 × 1 mm.For each volume, in both datasets,a
motion mask was computed using the baseline level-set
method with fixed parameter settings recommended in
the seminal publication.12

A subset of masks from S1 was used to train the
proposed network, whereas all the data from S2 were
used to evaluate the network’s generalizability. To train
the network only on correct masks (defined hereafter),
two experts in deformable image registration using

motion masks (M.O. and D.S.) independently labeled
the available S1 masks segmented by level sets. The
correct masks (usable for training) were labeled as
either Full Success (FS) or minor Error (mE), whereas
incorrect masks (not usable for training) were labelled
as Major Error (ME) or Full Failure (FF). This first
visual assessment session will be referred to as B1,
as each expert was blinded to the other expert’s
labels.

The experts assigned the FS label to masks per-
fectly fitting the expected motion discontinuities (e.g.,
Figure 1), whereas the mE label was assigned when
small under- or oversegmentation (e.g., Figure 2a)
occurred in noncritical areas, as segmentation errors
in regions with small magnitude of lung motion—for
example, near the apex—have less impact on registra-
tion. Conversely, ME label was assigned to masks that
would require manual editing before use in clinical con-
text, due to their more critical location, large extent (e.g.,
Figure 2b), inclusion of bones, or exclusion of tumors—
or other consolidations—located within the lungs. Even-
tually, FF label designated completely unusable masks
confined in a small portion of the lung (e.g., Figure 2c)
or leaking throughout all the volume, generally due to
a failure in the initial anatomical segmentation used by
the level-sets algorithm. The same criteria were subse-
quently used to label baseline masks from S2, as well
as the masks segmented by the DL-based methods, as
described in Section 2.3.

After an independent blinded assessment session B1,
the two experts jointly adjusted the labels by consen-
sus, session C1, for the cases where initial disagree-
ment had occurred. Thus obtained four-grade labels
were subsequently used to split the 43 patients from S1
into subsets SA

1 (27 patients with at least one correct
mask, namely, 14 FS and 35 mE) and SB

1 (16 remain-
ing patients with no correct mask).The former was used
for training and validation purposes,as specified in Sec-
tion 2.2.3, whereas the latter made part of the testing
subset, as specified in Section 2.3.1. Data splitting was
done on patient basis, as different images of the same
patient may not be simultaneously used for training and
testing.

2.2 Segmentation method

2.2.1 Multiplanar U-net framework
(majority voting U-nets)

Our motivation was to associate the high speed, low
memory load, and limited parameter number of con-
ventional 2D U-nets with 3D consistency. The proposed
approach achieves this goal by merging information
from three orthogonal planes, namely, the three (entire)
slices from the classic orthogonal directions. The ratio-
nale of this approach is that, thanks to the 3D context
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424 MOTION-MASK SEGMENTATION WITH U-NETS

F IGURE 2 Example errors found in segmented motion masks. Depending on their extent and location, these were labeled as minor error
(a), major error (b), or full failure (c)

F IGURE 3 In the proposed network architecture, the three U-nets 𝜃a, 𝜃c, and 𝜃s are trained with 2D slices extracted from a volumetric
image. During the inference, the 2D slices are concatenated to obtain 3D volumes and then merged using majority voting

brought by the orthogonal views, each U-net predict-
ing segmentation in a given slice orientation, for exam-
ple, axial, cannot only learn a certain regularity of 2D
shapes within the slices, but also a regularity along the
direction orthogonal to the slices.Predictions performed
independently for each slice would not enforce the reg-
ularity along the direction orthogonal to the slices.

Hence, the proposed segmentation method is com-
posed of three identical models based on the 2D U-net16

architecture (Figure 3). The differences with respect to
the original U-net are: the number of filters per layer is
decreased by a factor of 4 (to reduce the number of
parameters) and batch normalization is performed after
each convolution (for training stability).The three U-nets,
𝜃a, 𝜃s, and 𝜃c, are individually trained on 2D slices cor-
responding to one of the orthogonal planes v ∈ {a, s, c},
where a, s, and c, respectively, stand for axial, sagittal,
and coronal. The set of three trained 2D U-nets will be
referred to as Θ ≡ {𝜃a, 𝜃c, 𝜃s}. In the sequel, lower case

letters represent 2D slices and upper case letters repre-
sent 3D volumes.Using a N3-sized 3D CT scan X ∈ ℝN3

as input, each U-net 𝜃v is sequentially fed with batches
of N2-pixel slices xn

v ∈ ℝN2
, n = 1…N, along the asso-

ciated direction v. For each 2D slice, the U-net model
𝜃v predicts a N2-sized 2D segmentation mask ỹn

v . The
training process adjusts the weights of 𝜃v so as to mini-
mize the dissemblance between ỹn

v and the correspond-

ing reference mask
∗
yn

v , measured by a loss function

L(ỹv ,
∗
yv) based on the Dice similarity coefficient (see

Section 2.2.3). In the experiments, N = 256 was used
in agreement with data resampling strategy detailed in
the Section 2.2.2.

In the inference phase, three 3D segmentation masks
Ỹa, Ỹs, and Ỹc are built from the respective 𝜃v U-net out-
puts by concatenating the obtained 2D masks ỹn

v , n =

1…N. These three masks are eventually combined to
compute the final prediction Ỹf with 3D consistency.
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MOTION-MASK SEGMENTATION WITH U-NETS 425

They can be merged in different ways: union, intersec-
tion, or majority vote. Whereas union and intersection
could, respectively, lead to over- or undersegmentation,
majority vote allows one mask to fail without downgrad-
ing the final results in the areas where the other two
are successful.Hence,we have chosen the majority vote
strategy, that is, a voxel located at (i, j, k) in Ỹf is set to
one if at least two out of the three U-nets have predicted
one for this location:

Ỹf (i, j, k) =
{

1 if
∑

v Ỹv(i, j, k) ≥ 2

0 otherwise.
(1)

2.2.2 Preprocessing

All images were resampled and resized to obtain
isotropic volumes of 256 × 256 × 256 voxels with 2 mm
resolution consistent with the average slice spacing in
the dataset S1. Missing axial slices, if any, were padded
with −1000 HU value corresponding to the air.

2.2.3 Training

Considering the number of annotated data usable for
training (27 patients in SA

1 ), we applied K-fold cross-
validation scheme (K = 9) to train the model with as
many images as possible, while leaving out a subset of
annotated data for final evaluation. Indeed, using K = 9
allowed us to equally split SA

1 into groups of 27∕9 = 3
patients. Hence, in each of the nine folds, data from
7 × 3 = 21 patients were used for actual training, data
from three distinct patients were used for validation,and
data from three other patients were left out for testing.

The models Θ were trained during 20 epochs with a
fixed batch size of 32 slices. Their parameters (weights)
were updated by the Adam optimizer29 with 10−3 learn-
ing rate that was fixed after a grid search with tested val-
ues {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5} for the learn-
ing rate and {32, 64, 128} for the batch size. The loss
function was L = 1 − D,where D stands for the Dice sim-
ilarity coefficient frequently used to measure the overlap
between segmentation results30; its values range from
zero (no overlap) and one (perfect overlap).

2.3 Evaluation method

2.3.1 Models and respective test sets

With the nine-fold cross-validation strategy, the segmen-
tation predicted by the proposed method was evaluated
exactly once for each image from the subset SA

1 con-
taining mostly correct baseline masks. To also evalu-
ate the predictions on images where the baseline seg-
mentation failed, we complemented each testing set by

two patients drawn from SB
1 , so that each segmenta-

tion predicted for this subset was also evaluated exactly
once.Thus,within the data used in a given fold, the train-
ing,validation,and testing sets,respectively, represented
around 70%, 10%, and 20%, and each scan from the test-
ing set was segmented by Θ trained on 21 patients.

Subsequently, we trained Θ on all images from the
SA

1 subset with baseline masks annotated as correct.
The models thus trained, referred to as Θall, were used
in three additional experiments. In the first experiment,
Θall were used to segment all images from SB

1 and thus
assess to what extent the performance of the proposed
framework is affected by increasing the training set (from
21 to 27 patients).The second experiment aimed to eval-
uate the generalizability of the proposed segmentation
framework by applying Θall to all images from S2.

The last experiment aimed at comparing the proposed
approach with a 3D U-net.31 The 3D U-net was also
trained on all images from the SA

1 subset with baseline
masks annotated as correct, and then applied onto all
images from SB

1 . For a fair comparison, the same hard-
ware was used for training and inference,and the hyper-
parameters were set accordingly: same image size and
resolution (2563 voxels, 2 mm resolution), batch size of
1 (limited by memory constraint) compensated by an
increased number of epochs (160) to ensure an equal
total number of iterations.

2.3.2 Evaluation process

In the absence of ground truth segmentation for all
the considered testing data, the evaluation was mainly
based on labels assigned by the two experts accord-
ing to the criteria described in Section 2.1. Similarly
to the visual-assessment sessions B1 (blinded) and
C1 (consensus) for baseline motion masks alone, addi-
tional sessions were performed for both baseline and
predicted masks, as follows. During a second blinded
session (B2), each observer independently labeled the
masks segmented by both methods, baseline and pro-
posed, in all images from the set S1. Labels assigned
during B2 to the baseline masks were compared to
those assigned during B1,so as to assess each expert’s
intraobserver variability by means of the Cohen’s kappa
coefficient,32 whereas labels independently assigned by
different observers within the same session were used
to assess the interobserver variability. The session B2
was followed by a consensus session (C2),during which
the observers agreed on initially discordant labels for
the masks predicted by the proposed method. Thus
obtained consensus labels were unique for all images
from the set S1 and were compared to the consen-
sus labels assigned to the baseline masks during C1.
In each session, the masks were presented in a ran-
dom order and the observer was not informed by which
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426 MOTION-MASK SEGMENTATION WITH U-NETS

method the mask was segmented. The observer freely
scrolled the axial,sagittal,and coronal slices of the origi-
nal CT scan with an adjustable-density translucent mask
superimposed onto the image gray levels.

The same procedure was followed during two addi-
tional sessions, blinded (B3) and consensual (C3), to
label masks segmented by both methods in the images
from the dataset S2.Eventually, the masks segmented in
the images from the SB

1 subset by the proposed method
usingΘall and by the 3D U-net were labeled according to
the same procedure during a blinded session (B4) and
a consensus session (C4).

In addition to the above-described semiquantitative
(categorical) comparisons, a quantitative comparison
was carried out to assess the benefits of the majority
voting. In the absence of ground truth, we used as ref-
erence the subset of CT scans from SA

1 , for which the
motion mask segmented by the baseline method was
labeled as full success (consensus label FS,n = 14).We
used the Dice score, the average symmetric surface dis-
tance (ASSD), and the Hausdorff distance measuring
the largest gap between the surfaces. These measures
were calculated for the masks Ỹf predicted by majority
voting and for the masks Ỹa, Ỹs, and Ỹc separately pre-
dicted by each of the 2D U-nets.

3 RESULTS

We first present the results of the proposed method
compiled from nine testing subsets of the nine-fold
cross-validation, evaluated on S1. Then we describe the
results of the DL-based methods obtained using the
models (Θall and 3D U-net) trained on all patients from
SA

1 and evaluated on SB
1 ; we also report the generaliz-

ability of Θall evaluated on S2. Eventually, experts’ eval-
uation variability, as well as memory and time require-
ments are reported.

3.1 Nine-fold cross-validation

Figure 4 displays the evolution of the training loss func-
tion (cyan curve) for the 𝜃s U-net.The validation loss was
evaluated at the beginning of the training process and
at the end of each epoch (blue dots). The fact that the
values of the training and evaluation losses are very
close indicates that the proposed model did not lead
to overfitting on the training data. A fast decrease dur-
ing the two first epochs and stabilization around the
fifth epoch can be observed. The same behavior was
observed for 𝜃a and 𝜃c, their corresponding graphs as
well as more details can be found in the Supporting
Information (section Training loss graphs, Figures S.1
and S.2).

Table 1 represents the confusion matrix allowing a
semiquantitative (categorical) comparison between the

consensus labels (session C1 vs. session C2) assigned
to the motion masks segmented from the S1 dataset
by the baseline level-set algorithm (columns) and by
the proposed method (rows). The proposed method
yielded 79% of correct masks (21% of FS labels and
58% mE labels) against only 53% (15% FS and 38%
mE) for the baseline algorithm. Green color highlights
44 improvements (48%), that is, images for which the
predicted motion mask received a better label than the
baseline one; 33 out of them had incorrect (unusable
for registration, i.e., labels FF or ME) baseline masks,
whereas correct masks were predicted by the pro-
posed method.Conversely,16 predicted masks received
a worse label than the baseline one (17%, red color).
Nine of them passed from correct to incorrect category.
Labels remained unchanged for 32 images (35%).There
was no FF in the predicted masks, whereas the base-
line method failed in 17 CT scans. Among these, the
proposed method predicted 13 masks considered as
usable for registration (2 FS and 11 mE).

Figure 5 shows side-by-side orthogonal slices from
motion masks predicted by each individual U-net 𝜃v
and by majority vote. It can be seen that each indi-
vidual U-net predicted consistent segmentation in the
planes in which it was specialized, but inconsistencies
(holes or disconnected extra regions) can be observed
in the remaining planes. The multiplanar strategy, merg-
ing by majority voting the segmentation produced by
three orthogonal U-nets, allowed the correction of
these inconsistencies. Table 2 confirms the improve-
ment resulting from the majority voting as compared
to the predictions made by each 2D U-net separately.
It also shows an overall good agreement—in terms
of overlap and average surface distance—between the
predicted motion masks and those obtained by the base-
line method and labeled as full success. A relatively
high Hausdorff distance corresponds to localized small
outliers. More details can be found in the Supporting
Information (section Quantitative comparison between
majority vote and each 2D U-net, Figures S.5–S.7).

3.2 Models trained on all available
correct masks

3.2.1 Evaluation on the subset where the
baseline method failed

The training curves of the models Θall and 3D U-net are
provided in the Supporting Information (section Training
loss graphs, Figures S.3 and S.4, respectively). Let us
remind that these models were evaluated on the sub-
set SB

1 (36 CT scans), on which the baseline method
failed (no correct label). In comparison with these base-
line labels, Θall performed better on 34 scans (94.4%),
of which 33 changed the labels from incorrect to correct,
and the two remaining labels were unchanged (ME).
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MOTION-MASK SEGMENTATION WITH U-NETS 427

F IGURE 4 Training and validation losses for the sagittal U-net (𝜃s). The former are represented as mean value ± two standard deviations
over the folds

TABLE 1 Confusion matrix between consensus labels assigned to baseline (Level sets) and predicted (Majority vote) masks for the dataset
S1. In gray, CT scans for which the annotation remained unchanged. In green, images for which predicted masks received a better label. In red,
images for which baseline masks received a better label

Level sets
������������Majority vote FS mE ME FF TOTAL

FS 6 7 4 2 19 (21%)

mE 7 20 16 11 54 (58%)

ME 1 8 6 4 19 (21%)

FF 0 0 0 0 0 (0%)

Total 14 (15%) 35 (38%) 26 (28%) 17 (19%) 92 (100%)

TABLE 2 Quantitative comparison between the full-success motion masks segmented by the baseline method (consensus label FS,
n = 14), and those predicted by the 2D U-nets. Each measure is reported as mean value ± standard deviation, and the best result in each row is
highlighted by a bold font. The last column reports the mean improvement with respect to the best 2D U-net

Measure Axial U-net 𝜽a Coronal U-net 𝜽c Sagittal U-net 𝜽s Majority vote improvement

Dice (%) 98.50 ± 0.62 98.46 ± 0.49 98.70 ± 0.44 98.96 ± 0.32 0.3%

ASSD (mm) 2.1 ± 2.4 1.9 ± 1.7 1.1 ± 0.4 0.8 ± 0.2 23.0%

Hausdorff (mm) 87.7 ± 64.5 104.8 ± 72.2 61.9 ± 35.7 37.6 ± 26.7 39.2%

Compared with the masks obtained for the same sub-
set (SB

1 ) during the testing phase of the nine-fold cross-
validation (Section 3.1), the results obtained with Θall

were improved in nine scans (25%), unchanged in 26
scans (72.2%), and degraded in one scan (2.8%) from
FS to mE. This result shows the improvement brought
by increasing the training set (from 21 to 27 patients).

Among the labels obtained by the 3D U-net, 31
(86.1%) were improved and 5 (13.9%) remained
unchanged (ME) in comparison with the baseline; for
24 scans (66.7%), the label changed from incorrect
to correct. Details can be found in the Supporting
Information (Section Proposed method vs. 3D U-net,
Figure S.8).
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428 MOTION-MASK SEGMENTATION WITH U-NETS

F IGURE 5 Comparison of motion masks predicted by 2D U-nets trained on three types of orthogonal slices (from left to right: axial, coronal,
and sagittal) and by majority vote (right-most), superimposed onto respective slices from one patient: axial (top), coronal (middle), and sagittal
(bottom). Cross-hairs indicate the locations of the remaining slices

TABLE 3 Confusion matrix between consensus labels assigned to baseline (Level sets) and predicted (Majority vote) masks for the dataset
S2. In gray, CT scans for which the annotation remained unchanged. In green, images for which predicted masks received a better label. In red,
images for which baseline masks received a better label

Level sets������������Majority vote FS mE ME FF TOTAL

FS 2 9 3 0 14 (18%)

mE 2 25 21 1 49 (65%)

ME 0 2 11 0 13 (17%)

FF 0 0 0 0 0 (0%)

Total 4 (5%) 36 (48%) 35 (46%) 1 (1%) 76 (100%)

3.2.2 Generalizability

Table 3 summarizes the semiquantitative results (ses-
sion C3) evaluating the generalizability of Θall when
applied on S2 (different disease, different hospital). The
only full failure was produced by the baseline method,
which was successful in 40 CT scans (53%). The pro-
posed method obtained an improvement for 34 scans
(of which 25 passed from incorrect to correct category)
and a deterioration for four scans (of which two became
incorrect),so that 83% of the masks predicted by the pro-
posed method were correct. Masks obtained with both
methods received the same labels in 50% of scans (38
masks).

3.3 Experts’ variability, memory, and
time requirements

To assess the agreement between the experts’ anno-
tations, the intraobserver variability was computed
between B1 and B2 evaluation sessions on the masks
produced by the baseline method (n = 92).This resulted
in a Cohen’s kappa of 0.69 (confidence interval32

[0.54, 0.84]) and 0.66 (CI [0.50, 0.83]) for Experts 1 and
2, respectively. As for the interobserver variability, it was
computed with the evaluations by both experts on the
union of labels from B1, B2 , B3, and B4 sessions on the
masks produced by the baseline and proposed meth-
ods (n = 500). The result was a Cohen’s kappa of 0.54
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MOTION-MASK SEGMENTATION WITH U-NETS 429

(CI [0.45, 0.62]). The confusion matrices underlying the
computation of Cohen’s kappa are provided in the Sup-
porting Information (Tables S.I– S.III).

The training of Θwas performed with an NVIDIA Tesla
V100 GPU,using approximately 3.7 GB of graphic mem-
ory and 2.6 GB of RAM (vs. 9 GB of graphic memory
and 3.5 GB of RAM to train the 3D U-net). The training
of one fold for each model (𝜃a,𝜃s, and 𝜃c) took about 15
min. The overall training of all three models on the nine
folds (21 patients per fold) took almost 7 h. The train-
ing of Θall (on 27 patients) required 45 × 3 = 135 min
(2 h 15 min), whereas the training of the 3D U-net on
the same data took 62 h. For the inference, computing
a 3D motion mask with the proposed method required
0.8 GB of graphic memory and was completed within
5 s using a Quadro P2000 GPU or 35 s using only the
CPU (Intel©CoreTM i5-8500 CPU @ 3.00 GHz x 6). The
storage of each model 𝜃v weights required 13 MB, that
is, 39 MB for the entire model Θ. With the 3D U-net, the
inference was completed within 6 s on GPU and 10 s
on CPU and required 4 GB of graphic memory,whereas
the storage of the model weights needed 25 MB.

4 DISCUSSION

The goal of the work herein presented was to assess
whether or not the motion-mask segmentation can be
achieved by a relatively lightweight DL method more
rapidly and robustly than with the baseline level-set
method. To this purpose, we placed ourselves in an
application-driven perspective: midrange GPU for train-
ing, no manual expert-made segmentation available for
training,no data augmentation,nor heavy model design,
so as to fit the inference-time and memory constraints
required by a usage in clinical routines (even without
GPU available).

A multiplanar U-net framework was proposed to auto-
matically segment motion masks from thoracic CT
scans. It was compared with a standard 3D U-net on
a subset of the available data. Overall, both DL-based
solutions received similar scores and outperformed the
baseline level-set method.12 Specifically for the pro-
posed multiplanar framework, combining predictions of
different U-nets by majority vote was shown to be bene-
ficial compared to the separate U-net predictions (see
Figure 5 and Table 2). The proposed solution was
more robust than the baseline level-set method,12 when
applied to unseen data from S1: correct motion masks
represented 79% of the masks predicted versus 53%
for the baseline method, and the proposed solution pro-
duced no full-failure mask versus 19% for the baseline
method. In the experiments conducted on the dataset
S2 (unlike S1, no subset of S2 was used for training),
the proposed method also outperformed the baseline
one,with, respectively,83% versus 53% of correct motion
masks. Let us emphasize that the two datasets, S1 and

S2, were different in terms of disease analyzed (lung
cancer vs. COVID), scanner (Philips vs. Siemens), and
acquisition protocol, for example: 4D (S1) versus dual
breath-hold (S2), larger field-of -view for S1 compared
to S2.

These comparisons were based on labels assigned
by two experts whose average intraobserver agreement
assessed by the Cohen’s kappa coefficient was in the
range 0.60–0.79, which means that both experts were
moderately consistent32 in their individual evaluations.
Their interobserver agreement before consensus was
relatively weak (0.52),which justified the use of the con-
sensus step.

In terms of memory, both DL-based solutions are suf-
ficiently lightweight to segment a 256 × 256 × 256 voxel
image on a standard computer with a midrange GPU
board (5GB of graphic memory) or even without it, but
the proposed multiplanar U-net required five times less
graphic memory than the 3D U-net. The inference times
of both DL-based solutions were very similar to each
other and outperformed the baseline method (≥ 120
times and ≥ 20 times faster using GPUs and CPUs,
respectively).

Also, the baseline method12 needed three masks as
inputs: lung mask, rough bony anatomy, and patient’s
body outline.Although the two latter are relatively simple
to provide, the lung mask can be more difficult to obtain
in the presence of dense regions within the lungs. The
DL-based methods do not need any presegmentation
as input and are self -contained.

The work herein presented can be considered as
a proof of concept. To the best of our knowledge,
there is no publication reporting the use of DL models
for motion-mask segmentation. Our goal was to make
a step forward with respect to the reference method,
based on level sets and representing the state-of -the
art, rather than to seek the best-performing DL archi-
tecture. Interested teams can propose improvements
with respect to thus established benchmark (part of
the training datasets can be accessed upon request).
The improvement potential of the proposed multipla-
nar method can also be foreseen within the same
framework. First, increasing the number and accuracy
of annotated data should enhance the robustness of
the trained model. In the present work, only 49 cor-
rect masks were available in total—and split between
training, validation, and testing—and only 14 of these
could be considered as actual reference (full success),
whereas the remaining 35 contained minor errors. The
model should be retrained upon availability of more ref-
erence masks carefully drawn or corrected by experts.
Adding annotated data from S2 and from other datasets,
upon their availability,should reinforce the robustness of
the model, as demonstrated by the noticeable improve-
ment in performance when increasing the training set
from 21 to 27 patients (Section 3.2). In the context
of enriching the models using newly expert-annotated
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430 MOTION-MASK SEGMENTATION WITH U-NETS

images, the proposed multiplanar U-nets may be pre-
ferred over the 3D U-net, as the former allows retrain-
ing the model within a few hours versus several days
with the latter. Second, data-augmentation techniques
can also be used: both standard (linear and nonlin-
ear image transformations) and specific (e.g.,simulating
local condensations within the lungs). Also, many small
outliers responsible for large Hausdorff distances might
be cleaned by simple postprocessing techniques such
as retaining the largest connected components, hole fill-
ing, and smoothing. Finally, there are also avenues that
can be explored to improve the framework itself, such
as replacing the majority voting by a learned merging
strategy.22,24

A limitation of our evaluation was the absence of
reference motion masks segmented by experts, so
that quantitative comparisons (overlap and surface dis-
tances) could be carried out only on a subset of data
for which the masks segmented by the baseline method
were considered fully successful. Thus obtained mea-
sures were biased, because it was impossible to obtain
them for the cases where the proposed method per-
formed (visually) better than the baseline one.

Nevertheless, the proposed approach has already
shown more robust than the baseline method and
outperformed it in terms of computational cost. It
performed comparably to a 3D U-net in terms of
robustness, while requiring less memory and being
much faster to train. The code and weights of the
proposed model as well as a practical example for
applying motion-mask segmentation are available to
the community at: https://github.com/emmanuelrouxfr/
deep_learning_motion_mask_segmentation.
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