OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection
Nicolas Pinon, Carole Lartizien (2025). "OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection." Preprint, submitted to IEEE Transaction on Image Processing.
A PDF, more detailed version (08/2025) is also available here
Nicolas Pinon, Carole Lartizien (2025). "OCSVM-Guided Representation Learning for Unsupervised Anomaly Detection." Preprint, submitted to IEEE Transaction on Image Processing.
Daria Zotova, Nicolas Pinon, Robin Trombetta, Romain Bouet, Julien Jung, Carole Lartizien (2025). "GAN-based synthetic FDG PET images from T1 brain MRI can serve to improve performance of deep unsupervised anomaly detection models." Computer Methods and Programs in Biomedicine.
Nicolas Pinon (2024). "Unsupervised anomaly detection in neuroimaging: Contributions to representation learning and density support estimation in the latent space" Doctoral dissertation, INSA Lyon.
Nicolas Pinon, Robin Trombetta, Carole Lartizien (2023). "Anomaly detection in image or latent space of patch-based auto-encoders for industrial image analysis" XXIXème Colloque Francophone de Traitement du Signal et des Images.
Nicolas Pinon, Robin Trombetta, Carole Lartizien (2023). "One-Class SVM on siamese neural network latent space for Unsupervised Anomaly Detection on brain MRI White Matter Hyperintensities." Medical Imaging with Deep Learning.
Nicolas Pinon, Geoffroy Oudoumanessah, Robin Trombetta, Michel Dojat, Florence Forbes, Carole Lartizien (2023). "Brain subtle anomaly detection based on auto-encoders latent space analysis: application to de novo parkinson patients." IEEE 20th International Symposium on Biomedical Imaging.
Ludmilla Penarrubia, Nicolas Pinon, Emmanuel Roux, Eduardo Enrique Dávila Serrano, Jean‐Christophe Richard, Maciej Orkisz, David Sarrut (2022). "Improving motion‐mask segmentation in thoracic CT with multiplanar U‐nets." Medical Physics.
Verónica Muñoz-Ramírez, Nicolas Pinon, Florence Forbes, Carole Lartizen, Michel Dojat (2021). "Patch vs. global image-based unsupervised anomaly detection in MR brain scans of early Parkinsonian patients" MLCN 2021 (in conjonction with MICCAI).
Gabriel Mangeat, Harris Nami, Nicolas Pinon, Alexandru Foias, Nikola Stikov, Tobias Granberg, Julien Cohen-Adad (2019). "Stain-free histology to validate quantitative MRI" International Society for Magnetic Resonance in Medicine (ISMRM)
Image processing
[16h] Cours intégré niveau L2, INSA Lyon FIMI, 2024-2024
Algorithms and programming
[35h] TD niveau L1, INSA Lyon FIMI, 2022-2023
Machine learning and Deep learning
[8h] TP niveau M2, CPE Lyon, 2022-2023
Image processing projects
[16h] TP niveau L2, INSA Lyon FIMI, 2020-2022
Electromagnetism and waves
[83h] TD niveau L2, INSA Lyon FIMI, 2020-2022
Electricity and electromagnetism
[23h] TP niveau L2, INSA Lyon FIMI, 2020-2022
Deep learning for medical imaging
[12h] École de printemps, DLMI Spring school, 2020-2022
Mentorship for middle school students (Maths, Physics)
[20h] Mentorat, Collège Victor Hugo, Cachan (Coordées de la réussite), 2017-2018